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Abstract 

Both two dimensional (2D) and three dimensional (3D) imaging modalities are useful 

tools for viewing the internal anatomy.  Three dimensional imaging techniques are 

required for accurate targeting of needles.  This improves the efficiency and control over 

the intervention as the high temporal resolution of medical images can be used to validate 

the location of needle and target in real time.  Relying on imaging alone, however, means 

the intervention is still operator dependant because of the difficulty of controlling the 

location of the needle within the image.  The objective of this thesis is to improve the 

accuracy and repeatability of needle-based interventions over conventional techniques: 

both manual and automated techniques.  

In this thesis, I propose that by combining the remote center of motion concept 

using spherical linkage components into a passive or semi-automated device, the 

physician will have a useful tracking and guidance system at their disposal in a package, 

which is less threatening than a robot to both the patient and physician.  This design 

concept offers both the manipulative transparency of a freehand system, and tremor 

reduction through scaling currently offered in automated systems.  In addressing each 

objective of this thesis, a number of novel mechanical designs incorporating an remote 

center of motion architecture with varying degrees of freedom have been presented.  Each 

of these designs can be deployed in a variety of imaging modalities and clinical 

applications, ranging from preclinical to human interventions, with an accuracy of control 

in the millimeter to sub-millimeter range. 

Keywords 

Percutaneous needle intervention; image guided intervention; medical robotics; small 

animal imaging; ultrasound guidance; x-ray micro-computed tomography; three-

dimensional imaging; and image registration. 
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Chapter 1  

1 Introduction 

1.1 Mechatronic Surgical Assistants 

Since the introduction of the Horsley and Clarke apparatus in 19081, considerable effort 

has been devoted to the development of image-guided systems that are more user 

friendly.  Based on the idea that the physician using the system should be inconvenienced 

to a bare minimum, a great deal of effort has been devoted to developing systems that 

provide the surgeons with a new set of tools to extend their ability and perform more 

complex tasks. 

With the rapid development of computing power, coupled with improvements in 

imaging modalities, a number of new products offering varying levels of automation are 

evolving.  Table 1.1 is a summary of some of the systems that are in routine clinical and 

preclinical use today.  Commercially available image-guided systems available to 

researchers and healthcare workers vary in automation from freehand tracking devices to 

fully automated systems that can perform preprogrammed tasks, like the Cyberknife 

(Sunnyvale, CA), or telesurgical systems like the da Vinci robot (Sunnyvale, CA) where 

the physician controls the robot remotely.   

1.1.1 Freehand Surgical Navigation Systems 

One method to link the current orientation of the tool to the image is to use frameless 

stereotaxy.  This involves attaching a tracking device to the surgical tool, like 

electromagnetic, optical or sonic transmitters.14 Once the tracking system is registered to 

the image, a computer provides real-time visual feedback of the tool in the image to assist 

in needle or tool placement.  The primary advantage of this type of navigation system is 

that the physician can perform the intervention without compromising his/her dexterity 

and natural haptic feedback, making this a simple and feasible option for procedures like 

needle-guided interventions.14 
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Table 1.1: A summary of computer-assisted surgical tracking systems. 

System Name Institution  Subject Mount Type 

AESOP2 Computer Motion Human Cart Serial link robot 

Cyberknife3 Accuray Human Floor Serial link robot 

da Vinci4 Intuitive Surgical Human Cart Bar type parallelogram 

RCM telerobotic system 

Neuro Mate5 Integrated Surgical 

Systems 

Human Cart Serial link robot 

PinPoint6 Philips Human Ceiling Passive serial linkr 

ROBODOC7 Integrated Surgical 

Systems 

Human Floor and 

Patient 

Serial link robot 

RX-908 ortoMarquet Animal Floor Serial link robot 

SurgiScope9 Humboldt University Human 

Animal 

Ceiling Parallel robot 

Zeus10 Computer Motion Human Patient 

Bed 

Telerobotic system 

Micron 

Tracker11 

Claron Technology 

Inc. 

Human Freehand Optical Video-metric 

Polaris12 Northern Digital Inc. Human Freehand Optical Active/Passive 

Aurora12 Northern Digital Inc. Human Freehand Electromagnetic 

microBIRD13 Ascension 

Technology Corp. 

Human Freehand Electromagnetic 
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There are two different types of freehand tracking systems commercially 

available: optical, and electromagnetic.14 Optical tracking systems identify marker 

patterns using charge-coupled device (CCD) images from two different viewpoints to 

triangulate the tool location in space (see Figure 1.1).  Because of their high accuracy and 

large field of view, these systems can be adapted easily into a large number of clinical 

applications.  However, the line of sight between the markers and at least two CCD 

cameras must be maintained at all times.  This limits its use to procedures where at least a 

portion of the tool is outside the patient’s body.  Optical trackers commercially available 

today include the videometric system available from Claron Technology Inc.  (Toronto, 

Canada),11 and the active/passive infrared system from Northern Digital (Waterloo, 

Canada).12  

Another method for tracking tools inside the patient is to use an electromagnetic 

tracking device.  Electromagnetic systems use pulsed field generators to track the 

position of miniature field sensors about the size of a grain of rice (see Figure 1.2).  

Northern Digital (Waterloo, Canada)12 and Ascension Technology (Burlington, 

Vermont)13 offer electromagnetic tracking systems for a variety of medical applications. 
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Figure 1.1: Photograph of an infrared optical tracking system from Northern Digital.  The three optical 

markers attached to the tool are imaged from two different angles to determine its position. 

 

Figure 1.2: Photograph of an electromagnetic tracking system from Northern Digital.  The position of the 

ultrasound probe is tracked using a small coil of wire mounted near the tip of the probe. 
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1.1.2 Passive and Semi-automated Devices for Needle placement 

Although few researchers have proposed the use of passive or semi-automated devices 

for needle placement, these systems offer an effective alternative for needle interventions 

in ultrasound,15-17 CT18-20 and MRI21.  These designs are based on an early form of a 

freehand tracking system where articulated arms of various configurations determine the 

position of the tool tip by measuring the angles between the arms within the linkage.19, 20 

PinPoint 

The PinPoint system, available from Phillips (Cleveland, OH) is a passive tracking arm to 

assist the physician in planning and performing biopsies using CT data.6 Similar in 

appearance to the serial link robot, this device is a modified 3D digitizer from Immersion 

Inc., which uses a series of sliding counterweights via a hidden parallelogram linkage to 

support the structure.  Since this system is physically attached to the CT scanner, the 

physician can use this tool, with little additional training, to freely guide a needle while 

the system passively tracks the needle within the preoperative CT image.  In addition, this 

system is highly back drivable and counterbalanced, allowing the physician to use the 

system with little risk to the patient.  A disadvantage with this design is the use of 

counterweights in the tracker.  This limits the payload carrying capabilities to small 

objects like lasers and needle guides as the size and inertia of the counterweights needed 

for larger payloads becomes prohibitively large.   

Passive systems with minimal automation offer a less expensive alternative than 

fully automated systems as these systems are of reduced complexity and easier to use.  

However, since the device does not interfere with the physician’s movements in any way, 

the advantages of tremor reduction and motion scaling provided by a robotic system are 

not available here.  Since the development of freehand localizers, mechanically 

articulated arms have become unpopular as they offered little advantage over freehand 

techniques. 
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1.1.3 Robotic/Fully Automated Surgical Assistants 

The advantages of a robot in an interventional procedure is that the surgeon can 

manipulate multiple instruments through complex trajectories quickly and accurately, and 

work virtually in hazardous imaging environments or confined spaces that are not 

possible for the physician to work in.  Robots give the physician improved dexterity and 

accuracy by applying motion scaling and eliminating hand tremor.22 Most surgical 

robotic systems work with the surgeon and are usually controlled remotely using a 

specially designed joystick, voice control or a computer vision system to track the 

physician’s movements.23 

Many of these designs are based on the industrial serial link robot architecture 

with their many degrees-of-freedom, which has the advantage of low development cost, 

high accuracy, and high rigidity.24 These designs offer a convenient, off-the-shelf 

solution for experimentation or proof-of-concept for a specific clinical application.25 This 

approach of using industrial robots has shown success in clinical areas like imaging, 

radiation therapy,3 and orthopedic surgery26, to name a few.   

1.1.4 Commercial Robotic Systems for Surgery 

CyberKnife, NeuroMate, ROBODOC, and RX-90serial link robot 

Each of these robots have a serial link design, which provides the greatest level of 

flexibility and largest workspace possible, making it potentially useful for a many 

different procedures from imaging3, 27 to milling operations in orthopedic surgery.26 The 

CyberKnife, developed by Accuray, uses a Fanuc (Fanuc Robotics North America, 

Rochester Hills, MI) serial link robot for radiosurgery.3 The system directs a high energy 

X-ray stream to a fixed target and uses X-ray imaging to adjust the robot and attached 

accelerator to maintain alignment to the target.   

ROBODOC7 and NeuroMate5 are both serial link robots developed by Integrated 

Surgical Systems (Sacramento, CA).  The NeuroMate system positions a needle guide 

over the target for manual insertion, while the ROBODOC system uses the same robot 

architecture for joint replacement surgery.  With the patient’s bone rigidly attached to the 
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robot base via a fixation device, the surgeon hand guides the robotic arm to the starting 

point using a force sensor attached to the robot.  Once the correct implant geometry has 

been selected by the surgeon, the robot then automatically cuts the desired shape in the 

bone to accept the implant.   

Industrial robot designs have also shown success in applications involving 

interventions on animals.  The Staubli RX 90 clean environment robot (Bayreuth, 

Germany) was successfully used as a part of a synergistic guidance system, similar to 

ROBODOC, by a research group at Karlsruhe University (Germany).8 

SurgiScope 

This robot architecture is commonly known as a delta robot, which uses three 

parallelograms, each of which is connected through a universal joint to construct a 

parallel manipulator with three translational and one rotational degree-of-freedom.9 The 

three parallelograms restrict the end effector movement to three degrees-of-translation, 

and the fourth degree-of-rotation is controlled by a fourth arm which extends from the 

robot base to the end effector.  This design was patented by Reymond Clavel in 1980, to 

manipulate small objects at a high rate of speed.28 The advantage of this design is that the 

robot is mounted on the ceiling allowing the medical staff to work with it without 

obstructions, despite its large footprint. 

AESOP, Zeus and the daVinci robot  

The Zeus robotic system (Computer Motion Inc., Goleta, CA) was developed as a 

surgical assistant for laparoscopic surgery, which integrates the Automated Endoscopic 

System for Optimal Positioning (AESOP) platform.10 The system has three robotic arms: 

an AESOP unit for endoscope positioning, and at least two additional arms for holding 

surgical tools.  Each of the arms was designed to be mounted onto the surgical table, and 

fitted with articulating wrists, giving a total of six DOF.  The AESOP module was 

developed to support and maneuver an endoscopic camera.2 This is a 7 DOF robotic 

system, with three passive joints from the base to the elbow joint, and four motorized 

joints controlled via voice control. 
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The daVinci system illustrated in Figure 1.3, below, replaced the Zeus robotic 

system in 2003 when Computer Motion merged with Intuitive Surgical (Sunnyvale, CA).  

The daVinci robotic system consisted of at least three robotic arms attached to a cart.4 A 

binocular camera was attached to one of the robotic arms and various tools or instruments 

could be mounted to the other arms.  The camera image was transmitted to the binocular 

viewport where the physician controled the robot.  Controlling the instruments through 

the console allowed for improved accuracy through motion scaling and filtration of 

movement tremors. 

 

Figure 1.3: Photograph of the DaVinci surgical robotic system.  Copyright © 2000, 2001, 2002 Free 

Software Foundation, Inc.; 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 

Despite the daVinci being one of the most successful surgical robotic systems to 

date, one shortcoming preventing its widespread use is its prohibitive cost.29 The setup 

time and calibration of the instruments requires a special team and in many cases a 
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dedicated surgical suite for the robot.30 The large footprint of the robotic arms also 

restricts its use to procedures on adults, as the arms may collide with each other for 

smaller patients or animals.31 In addition, haptic feedback is absent in these systems, 

which could result in excessive force being applied to the patient without the surgeon 

realizing it.31 Although the daVinci system is capable of precise relative motion control, 

it is known to have a poor absolute positioning accuracy,32 which imposes limitations on 

using this system for guiding needles in conjunction with high resolution scanners. 

1.2 Devices for Needle Based Interventions 

Needle guided interventions through the skin is preferred to surgery as there are fewer 

complications and quicker, less-painful recovery times.  As a result, percutaneous needle 

interventions have become the standard of care for diagnoses, such as biopsies, and 

minimally invasive treatment of diseases.  Examples of needle-based interventions are 

prostate brachytherapy, where needles are used to deliver about 80-100 small radiation 

sources into the prostate,33 and radiofrequency and microwave ablation of liver 

tumours.34 

Less complicated than other forms of surgery like tissue dissection, needle 

interventions usually require only three decoupled tasks:  

(1) placing the needle at the desired insertion point on the skin, requiring three 

independent translational motions,  

(2) pivoting the needle at the entry point to align the expected needle path with the 

target, and  

(3) inserting the needle through the skin entry point to the intended target in the 

image.   

Therefore, robots for needle insertion require a minimum six degrees of freedom: 

three to define the location of the point of entry on the patient’s skin, two rotational 

degrees of freedom at the point of entry, and insertion of the needle into the body.29, 30  
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1.2.1 Remote Center of Motions Designs 

Of particular interest are the robotic systems that were designed according to the 

specifications outlined by Taylor et al.,35 where the tasks of needle placement, orientation 

and insertion are mechanically decoupled using a remote center of motion (RCM).  By 

decoupling the motion of the needle about the RCM, it is no longer necessary to control 

multiple degrees-of-freedom simultaneously to control the needle insertion, which is the 

most delicate part of the procedure.  By aligning the needle axis to the RCM of the 

machine, the needle can be pivoted about a fixed point and inserted through a 

predetermined entry point without the need to adjust the translational placement of the 

machine. 

There are two different methods to create an RCM: creating a mechanically 

constrained linkage locked by the kinematics of the machine, or using the robot controller 

to coordinate the movement of a general purpose robot with many degrees-of-freedom.  

This can be achieved with an industrial robot3 or custom robotic designs like the 

serial/parallel manipulator by Stacco and Salcudean.36 In terms of the robot architecture, 

the fixed RCM robot design is preferred to general purpose robots as the fixed RCM 

robots are better suited to a specific task in confined spaces.  In particular, fixed RCM 

devices allow higher angular mobility in the confined space of closed bore scanners.23 

Surgical robots have used one of two approaches to produce a mechanically 

constrained RCM: either a parallelogram or spherical link design.  The parallelogram 

linkage is the most popular design and uses either a parallelbar,4 or belt drive37-39.  The 

spherical link mechanism is a linkage where the axis of each revolute or sliding joint 

intersects at a common point in space and can incorporate any combination goniometric 

arcs,40, 41 or pinned connections (like the universal joint used in the AESOP robotic 

arm10).  The Horsley and Clarke apparatus is an example of a spherical linkage, which is 

composed of one revolute joint and one goniometer arc to create a RCM with two DOF: 

pitch and yaw.1 

The double parallelogram linkage is the most popular design in medical systems 

as the actuators can be mounted on the stationary part of the mechanism to reduce the 
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inertia of the linkage, and the parallelogram can be counterbalanced more easily than 

spherical linkages because cables can be routed through the mechanism more easily than 

curved beams.42 As a result, spherical linkage designs have been restricted to applications 

like a joystick design in a master-slave manipulator or end-of-arm tooling in a robotic 

manipulator.4, 10 

1.3 Design Considerations for Medical Devices 

One of the many technical challenges in designing an interventional device is the human-

machine interface.  The interface must allow the physician to work cooperatively with the 

machine.  Thus, in order to successfully integrate the machine, factors such as 

ergonomics and the surgical work flow must be considered at the initial phase of design.  

Standard input devices used for computers, like the keyboard and mouse, are not 

appropriate in a surgical environment as there is not an intuitive way the physician can 

use the input device to perform an intervention where the tool is handled in a very 

different manner.  This has led to the development of special purpose manipulators to 

control the robot in surgical systems.4 

An example of a special purpose manipulator is the daVinci surgeon’s console.4 

This system provides an 3D view by projecting a binocular image of the surgical site over 

top of the surgeon’s arms and hands, giving the physician the illusion the robot is an 

extension of his/her arms.  The console allows the physician to control two robots at a 

time using two manipulators, one each for the left and right hand.  Each manipulator has 

a total of seven degrees-of-freedom to control each robot arm: three translational and 

rotational, plus an additional control for gripping.  In addition, there are foot pedals at the 

base of the console to control other features of the system such as switching control to 

any of the robot arms, or switching control over the clutch, allowing the robot to be back 

driven manually. 

1.3.1 Safety  

A significant barrier preventing widespread integration of automated robotic systems into 

the healthcare system is the potential safety hazard to both the patient and surgeon in the 

event of equipment failure, making it difficult to get regulatory approval.  In contrast to 



www.manaraa.com

12 

 

 

robots used in an industrial setting, surgical robots are often in the same workspace as the 

physician, staff and patient.  Therefore, the use of these systems is strictly regulated by 

the authorities (like Health Canada or FDA in the United States of America), and requires 

a risk analysis to determine the risks and benefits for both the patient and staff.   

Health Canada classifies the risk level of a medical device into one of four 

categories based on the level of control needed to assure the effectiveness and safety of 

the device.  A Class 1 device poses the lowest potential risk and does not require Health 

Canada approval for use on human or animal subjects.  A Class II device requires a risk 

analysis from the manufacturer of the device.  Common methods used to identify the 

safety of a device are: failure modes effects analysis (FMEA) or failure modes effects and 

critically analysis (FMECA).43 These methods are used to identify all component failures 

and access the probability of occurrence, delectability of the problem and the severity of 

the failure.  Low risk failures where no harm can come to both the patient and staff are 

considered to be a category II risk level.  Failure modes that can cause serious injury or 

death are classified as either a level III or IV and are subject to in-depth scrutiny, which 

inevitably increases both the lead time and cost of integrating the system into a clinical 

setting. 

Another aspect affecting the safety of a mechatronic device is the stiffness of the 

kinematic frame and drive system.  The advantage of a rigid frame and a non-back 

drivable transmission is that they allow for an accurate tool positioning and high load 

carrying capabilities.  The problem with this design is that the physician must interact 

with the device using some sort of input device (joystick, voice command, etc..  The 

robotic device could become unusable and possibly hazardous if there is a failure in the 

electronic control loop.  As a result, these types of systems are generally classified as a 

higher risk, thus requiring redundancies in the system design, and possibly increasing the 

time for regulatory approval of the device. 

Redundancy in the kinematics and sensing are the most common means to 

improve the safety of a robot used for surgery.23 Kinematic redundancy can be 

accomplished by constraining the motion of the robot: for example, the addition of 
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physical stops to prevent the robot from colliding with a tool or patient.  Sensing 

redundancy is another option and is typically accomplished by using multiple sensors in 

serial at either end of the transmission chain to verify the pose of the robot. 

On the other hand, a robot with low stiffness and high back drivability are 

inherently safer in a surgical environment as the system exerts less force on the patient.23 

Also, if the system loses power, it may be possible to still use the device by directly 

manipulating the tool.  The disadvantage of this approach is these systems are less 

accurate due to the flexibility and low gear ratio transmission, and can create a possible 

hazard due to the possibility of dropping or driving a heavy tool into the patient/physician 

in the event of a control failure. 

To overcome this difficulty, one can design a gravity balance into the system as a 

means to improve the safety.  Active gravity balances used in industrial robot designs are 

not sufficient to reduce the risk level of the robot.  Alternately, counterweights provide a 

simple and safe alternative to an active anti-gravity balance, but are limited to small 

designs and payloads where the range of motion of the device is limited. 

Another method that can be used to counterbalance a linkage is to use springs in 

place of counterweights.  Most springs, like gas, compression, or torsion springs, exert a 

force (or torque), which is proportional to the change in length, and offer a point of 

adjustment to compensate for an unknown or variable payload.   However, conventional 

linear springs do not adequately balance the robot except at one or two configurations.  

To compensate for drift, the designer is forced to accept a compromise between using 

friction or motors44 at the joints, or adding a purity of additional linkage elements and 

springs,45 which increases both the complexity and inertia of the device, making this 

option unsuitable for designs that need to be back drivable.  Another option is to use a 

constant force spring, which consists of a flat piece of metal tightly wound around a 

drum, and exerts a nearly constant force as it is unwound.  Since the force exerted by this 

type of spring is typically small, they are usually found only in small devices like 

mechanical timepieces. 
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Ideally, any of these robotic designs described can be used to improve the safety, 

accuracy and speed of a procedure; however, this is not the case for many minimally 

invasive procedures, which make use of imaging systems like ultrasound (US), that are 

not harmful to either the patient or physician.  In addition, since many decisions are made 

during surgery, the time saved by having the robot automatically insert the needle to the 

correct location would be compromised by the additional hazards of incorrectly placing 

the needle as the physician does not have complete control over this action. 

Since many of the devices described cannot be rear-driven, the physician must 

rely on interaction with the computer interface to correctly position the needle.  Although 

the inability to rear drive the system can provide rigidity for needle insertion, the 

physician does not have direct control over needle placement.  Without a sufficient 

amount of training, it may be difficult to successfully integrate a fully automated system 

and result in added complexity to the procedure. 

In cases where the physician is not exposed to any hazards (like radiation or 

hazardous chemicals), it is difficult to justify the use of an automated system to place and 

insert a needle if there is a solution with a minimum level of automation and complexity.  

In addition, following the current protocol will not only solve the clinical issue at hand in 

many cases, but also gain acceptance more easily as there is little training required. 

1.4 Hypothesis 

Both 2D and 3D imaging modalities are useful tools for viewing the internal anatomy.  

Three dimensional imaging techniques are required for accurate targeting of needles.  

They improve the efficiency and control of the intervention as the high temporal 

resolution of 2D/3D imaging can be used to validate the location of needle and target in 

real time.  Relying on imaging alone, however, means the intervention is still operator 

dependant because of the difficulty of controlling the physical location of the needle 

within the image. 

The overarching hypothesis of the research program described in this thesis is 

that integrating 2D and/or 3D imaging with a mechatronic device to constrain the 
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needle movement will improve the accuracy and repeatability of needle intervention 

over conventional techniques.  An image-guided mechatronic system will enhance the 

intervention as there will be a direct link between the coordinates of the image and device 

supporting the needle.  Integration of various imaging systems with a mechanical device 

allows 2D/3D guidance throughout the entire procedure including visualization, 

intervention planning, validation and correction in an integrated interventional system. 

1.5 Research Objectives 

The long-term objective of this research project is to improve the outcome of needle-

based interventions over conventional techniques: both manual and automated 

techniques.  This includes increasing the accuracy and repeatability of these procedures 

to minimize the invasiveness of the procedure.  The specific objectives in this thesis are: 

• Develop a highly dexterous and compact mechatronic needle guidance system 

that can be deployed in a variety of imaging modalities and clinical applications, 

from preclinical to human interventions. 

• Develop an interactive needle guidance system with the precision of a robot, but 

with the interactive transparency of handheld tools currently in use with an 

accuracy of control in the millimeter to sub-millimeter range. 

• Improve real-time tracking and stabilization of the equipment used for 

intervention using a low inertia spring balance. 

In this thesis, I proposed that by combining the remote center of motion concept using 

spherical linkage components into a passive or semi-automated device, physicians will 

have a useful tracking system at their disposal in a package, which is less threatening to 

both the patient and physician.  This design concept offers both the manipulative 

transparency of a freehand system, and tremor reduction through scaling currently offered 

in automated systems.  I proposed three novel designs for needle interventions with 

improved accuracy and minimum complexity, each based on the spherical kinematics 

designs implementing each of the parallelogram, goniometer arc, and hinged spherical 

linkage with the third being the common element among the following proposed designs: 
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• 3D ultrasound-guided prostate biopsy system, 

• 3D ultrasound-guided prostate therapy system, and  

• 3D micro-CT-guided needle positioning system for small animal research. 

1.6 Thesis Outline 

Achievement of each specific research objective listed above is presented in the 

following four chapters, the first two published,46, 47 and the third and fourth in 

preparation for submission to peer-reviewed journals.  The next four chapters form the 

body of the thesis, and are summarized as follows: 

1.6.1 Chapter 2: Mechanically assisted 3D ultrasound guided 
prostate biopsy system 

Currently there are limitations associated with the prostate biopsy procedure, which is the 

most commonly used method for a definitive diagnosis of prostate cancer.  With the use 

of 2D transrectal ultrasound (TRUS) for needle guidance in this procedure, the physician 

has restricted anatomical reference points for guiding the needle to target sites.  Also, any 

motion of the physician’s hand during the procedure may cause the prostate to move or 

deform to a prohibitive extent.  These variations make it difficult to establish a consistent 

reference frame for guiding a needle.  We have developed a 3D navigation system for 

prostate biopsy, which addresses these shortcomings.  This system is composed of a 3D 

US imaging subsystem and a passive mechanical arm to minimize prostate motion.  To 

validate our prototype, a series of experiments were performed on prostate phantoms.  

The 3D scan of the string phantom produced minimal geometric distortions, and the 

geometric error of the 3D imaging subsystem was 0.37 mm.  The accuracy of 3D prostate 

segmentation was determined by comparing the known volume in a certified phantom to 

a reconstructed volume generated by our system and was shown to estimate the volume 

with less than 5% error.  Biopsy needle guidance accuracy tests in agar prostate phantoms 

showed that the mean error was 2.1 mm and the 3D location of the biopsy core was 

recorded with a mean error of 1.8 mm.  In this paper, we described the mechanical design 

and validation of the prototype system using an in vitro prostate phantom.  Preliminary 
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results from an ongoing clinical trial show that in-plane prostate motion is small with an 

in-plane displacement of less than 1 mm during the biopsy procedure. 

1.6.2 Chapter 3: A Compact Mechatronic System for 3D Guided 
Prostate Interventions 

Ultrasound imaging has improved the treatment of prostate cancer (PCa) by producing 

increasingly higher quality images and influencing sophisticated targeting procedures for 

the insertion of radioactive seeds during brachytherapy.  However, it is critical that the 

needles be placed accurately within the prostate to deliver the therapy to the planned 

location and avoid damaging surrounding tissues.  We have developed a compact 

mechatronic system, as well as an effective method for guiding and controlling the 

insertion of transperineal needles into the prostate.  This system has been designed to 

allow guidance of a needle obliquely in 3D space into the prostate thereby reducing pubic 

arch interference.  Choice of needle trajectory and location in the prostate can be adjusted 

manually or with computer control. 

To validate our system, a series of experiments were performed on phantoms.  

The 3D scan of the string phantom produced minimal geometric error, which was less 

than 0.4 mm.  Needle guidance accuracy tests in agar prostate phantoms showed that the 

mean error of bead placement was less than 1.6 mm along parallel needle paths that were 

within 1.2 mm of the intended target and 1º from the preplanned trajectory.  At oblique 

angles of up to 15º relative to the probe axis, beads were placed to within 3.0 mm along a 

trajectory that was within 2.0 mm of the target with an angular error less than 2º.   

By combining 3D TRUS imaging system to a needle tracking linkage, this system should 

improve the physician's ability to target and accurately guide a needle to selected targets 

without the need for the computer to directly manipulate and insert the needle.  This 

would be beneficial as the physician has complete control of the system and can safely 

maneuver the needle guide around obstacles like previously placed needles. 
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1.6.3 Chapter 4: Micro-CT Geometric Accuracy Phantom for 
Improved Fiducial Localization in Image-Guided Needle 
Positioning Systems 

In this paper, a compact quality assurance phantom qualified to a traceable standard is 

presented for routine evaluation of the geometric accuracy of micro-CT scanners.  An 

automated algorithm is described that processes micro-CT images of the phantom to 

characterize the geometric accuracy of the scanner and calculate correction factors to 

reduce the geometric error of the images.  The phantom and algorithm are used to 

evaluate the geometric accuracy of five micro-CT scanners representing four different 

models of micro-CT systems.  The calculated correction factors are then applied to 

measurements of fiducial markers in each of the five scanners to evaluate their ability to 

improve fiducial localization.  The techniques developed in this study allow the micro-

CT end user to guarantee the highest level of geometric fidelity in images.  This ability is 

crucial for applications such as mechatronic needle positioning systems, which cannot be 

successful without high geometric accuracy. 

In all three of the scanners, the geometric error was minimal, and statistically 

significant correction factors were derived; in many applications, these corrections would 

be practically negligible.  In some applications they could be important, and stable, 

traceable corrections factors are possible in all three axis.  Each of these three scanners 

was found to have sub-voxel accuracy in localization of bead centroids.  In two of the 

scanners tested, or 40% of the total, a correctable geometric inaccuracy was detected in 

the image.  The error was found to be anisotropic in nature and required different 

correction values for the in-plane and out-of-plane directions.   However, application of 

correction factor allowed these two scanners to achieve sub-voxel accuracies.   Use of a 

calibration phantom should therefore be considered for any application that demands high 

geometric fidelity in images.  The geometric errors detected within micro-CT images by 

this study are not immediately obvious but could be serious in an application (such as a 

micro-CT guided small animal interventions) that may require targeting accuracies < 200 

µm.  The calibration phantom is an easily implemented assurance to micro-CT end users 

of the geometric fidelity of their images. 
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1.6.4 Chapter 5: 3D Image-Guided Robotic Needle Positioning 
System for Small Animal Interventions 

This paper presents the design of a micro-CT guided small animal robotic needle 

positioning system.  In order to simplify the robotic design and maintain a small targeting 

error, a novel implementation of the RCM is used in the system.  The system has been 

developed with the objective of achieving a mean targeting error of < 200 µm while 

maintaining a high degree of user friendliness.  The robot is compact enough to operate 

within the micro-CT bore.  Small animals can be imaged and the intervention performed 

without the need to transport the animal from one workspace to another.  Not requiring 

transport of the animal reduces opportunities for targets to shift from their localized 

position in the image and simplifies the workflow of interventions.  An improved method 

of needle calibration is also presented that better characterizes the calibration using the 

position of the needle tip in photographs rather than the needle axis.  A calibration fixture 

was also introduced, which dramatically reduces the time requirements of calibration 

while maintaining calibration accuracy.  Two registration modes have been developed to 

correspond the robot coordinate system with the coordinate system of the micro-CT 

scanner.  The two registration modes offer a balance between the time required to 

complete a registration and the overall registration accuracy.   The development of slow 

high accuracy and fast low accuracy registration modes provides users with a degree of 

flexibility in selecting a registration mode best suited for their application.  The errors of 

the high accuracy primary registration were fiducial registration error (FREprimary=21 ± 6 

µm) and target registration error (TREprimary=31 ± 12 µm).  The error in the low accuracy 

combined registration was TREcombined=139 ± 63 µm.  Both registration modes are 

therefore suitable for small-animal needle interventions.  The targeting accuracy of the 

robotic system was then characterized using targeting experiments in tissue-mimicking 

gelatin phantoms.  The results of the targeting experiments were combined with the 

known calibration and needle deflection errors to provide a more meaningful measure of 

the needle positioning accuracy of the system.  The combined targeting errors of the 

system were 149 ± 41 µm and 218 ± 38 µm using the primary and combined registrations 

respectively.  Finally, pilot in vivo experiments were completed to demonstrate the 

performance of the system in a biomedical application. 
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Chapter 2  

2 Mechanically Assisted 3D Ultrasound Guided Prostate 
Biopsy System 

2.1 Introduction 

Digital rectal exams and prostate-specific antigen (PSA) blood tests are common 

screening tests for prostate cancer (PCa) in asymptomatic men.  Combined with the 

public’s increased awareness of PCa and PSA testing, the proportion of men diagnosed 

with early stage prostate cancer has increased.1, 2  When diagnosed at an early stage, the 

disease is treatable;3, 4 and even at later stages, treatment can be effective.  However, if a 

tumour has extended beyond the prostate, the risk of metastases increases significantly.  

 The definitive diagnosis of PCa requires histological assessment of tissue cores 

drawn from the prostate during a biopsy procedure.  The physician uses a conventional 

2D transrectal ultrasound (TRUS) probe to guide the needle into the prostate.  Biopsies 

are commonly performed with an 18-gauge needle mounted on a spring-loaded biopsy 

“gun”.  This gun is connected to an “end-firing” 2D TRUS probe by a guide that forces 

the needle to stay in the imaging plane so it is always visible in the US image.  The 

TRUS probe is held by the physician and inserted into the patient’s rectum in order to 

image the prostate through the rectal wall (Figure 2.1).  Typically, an average of 10 

biopsy cores is obtained in a single biopsy procedure.5 Each core is separately identified 

as to its location within the prostate so that the pathologist can report the extent and grade 

of cancer. 

While the TRUS-guided prostate biopsy has become a commonly performed 

urological procedure, it is not without limitations.  Many patients’ initial biopsy will be 

negative for PCa; however, because the sensitivity of the procedure is poor, PCa cannot 

be ruled out in these patients.   Physicians currently try to obtain occult cancer samples 

by taking biopsies from predetermined regions of the prostate that have a high probability 

of harboring cancer.  Not only is the volume of the biopsy sample small but the presence 

of PCa is also often multi-focal, involving only a small part of the prostate in the early 
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stages of the disease.3, 6  As a result, a patient may be informed of a negative biopsy result 

but in fact may be harboring an occult early stage cancer.  The management of these 

patients, in addition to patients diagnosed with early stage disease, is currently a major 

challenge. 

 

 

Figure 2.1: Schematic drawing of a biopsy procedure illustrates how a forward viewing probe captures 

images of the prostate and nearby organs (bladder and urethra).  The needle guide constrains the needle 

path to stay in the imaging plane of the TRUS probe so it is always visible in the US image. 

 Since a negative result does not preclude the possibility of a missed cancer,7 

patients undergo repeat biopsies when indicated by clinical suspicion and in cases when a 

positive biopsy for cancer would have therapeutic consequences.  Since there are an 

appreciable number of men with false-negative biopsy who, in fact, harbor curable PCa, 

the physician is faced with a difficult challenge.  Sometimes these patients are imaged 

with other modalities and undergo a second or even a third biopsy, in which the physician 

tries to avoid the location of the first negative biopsy. 
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 Various reports have shown that the detection rate of PCa for repeat biopsy 

procedures range from 10% to 25% (after initial biopsy results were shown to be 

negative).3, 8-10  Because PCa is present in at least a tenth to a quarter of patients who 

have undergone an initial negative biopsy, current biopsy procedures are still 

suboptimal.6, 11, 12  If an initial biopsy fails to detect cancer, how should a repeat biopsy 

be directed? Should the repeat (and initial) biopsy be lesion-directed, random, or based 

on the details of the patient’s anatomy (e.g., prostate regions, volume, shape)?3, 13  

 Another important challenge facing physicians is men diagnosed on biopsy to 

have pre-malignant lesions, i.e. high-grade prostatic intraepithelial neoplasia, and 

particularly atypical small acinar proliferation (ASAP).14  These are challenging to 

manage as there is a 40-50% chance of finding cancer on repeat biopsy with ASAP.15  

Since co-existing cancer might be present, especially with ASAP, where the pathologist 

finds only a small amount of histological “atypia” but not enough material to confidently 

diagnose cancer, these patients require a repeat biopsy soon after the first.  In these 

situations, it is vital to re-biopsy the same area.14  Currently, 2D US provides only a 

vague location of the abnormal findings, and it is not possible to be certain that the same 

area has been sampled by the repeat biopsy. 

 Due to the increasing number of younger men with potentially early and curable 

PCa undergoing repeated prostate biopsy, it is important not to re-biopsy the same area if 

the original biopsy was negative, and it is particularly vital to re-biopsy the exact area if a 

possible abnormal area was detected on first biopsy.14, 15  Thus, the locations of the cores 

obtained in 3D from the prostate must be known accurately to help guide the physician 

during the repeat biopsy16, 17 to help in correlating any imaging evidence of the disease, 

and to provide improved planning for any subsequent therapy.  

 As there is a clinical need for a prostate biopsy system allowing recording of the 

core locations, and guiding tools to allow sampling of specific targets in 3D, special 

purpose TRUS biopsy systems have emerged in the marketplace.  Envisoneering Medical 

Technologies (St. Louis, MO) has developed a system that uses a stationary endorectal 

ultrasound probe for biopsy.  The Voluson prostate biopsy system (General Electric) is a 
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3D handheld US imaging system that allows for real-time imaging of the prostate.  

Several groups have reported using 3D prostate systems in both phantom and patient 

studies.18-21 These studies have shown an improvement in the positional and diagnostic 

accuracy of the procedure.20-1  However, there is still a group of patients with ultrasound 

occult cancers.20  As a result, the use of real-time 3D US probes suffers from the same 

problems as 2D probes.20 

 MRI imaging using high resolution T2 weighted images, and MRI spectroscopy 

are promising methods that can improve the detection of prostate cancer.22  Several 

groups have proposed and developed a number of potential solutions that use CT or MRI 

for prostate biopsy.23-25  Fichtinger et al. integrated CT with a side-firing TRUS system to 

guide the needle to a preplanned target using a robotic arm.19  MRI has also been used to 

identify potential malignant tumors while a robotic device has been used to guide the 

biopsy needle.24,25  The DaVinci robot (Intuitive Surgical Inc., Sunnyvale, CA) has been 

used extensively for prostate surgery, and can also be adapted to guide a biopsy needle.  

However, these solutions require physicians to use CT,23 MRI,24, 25 or specially modified 

biopsy systems, which are costly.  As well, the workflow for each of the new designs 

differs significantly from current biopsy protocols, requiring physicians to retrain.  

Furthermore, since there are more than one million biopsies performed each year,26 it 

would be beneficial to develop a biopsy system that utilizes ultrasound equipment 

currently in use for the procedure.  Also, the use of 3D US coupled to a mechanical 

navigation system has the potential to provide a reproducible record and allow for image 

fusion with other imaging modalities like MRI, assisting the physician in planning a 

repeat biopsy.  This system can potentially eliminate most of the user variability of 

conventional non-fixed hand-held probes that render them unsuitable for precision 

biopsy, while preserving some of the user familiarity.  

 In this paper, we describe the development and testing of a mechanically assisted 

3D TRUS prostate biopsy system, which addresses the limitations of current prostate 

biopsy procedures and also minimizes adoption cost and physician retraining.  We also 

report briefly on the initial clinical use of this system for prostate biopsy. 
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2.2 System Design 

Our 3D TRUS system is an integrated 3D workstation, with mechanical guidance system 

and software tools to record the core locations and guide the needle to its target.  It allows 

real-time tracking and recording of the 3D position and orientation of the biopsy needle 

as the physician manipulates the US transducer.  The system uses (1) passive mechanical 

components for guiding, tracking, and stabilizing the position of a commercially 

available end-firing transrectal US transducer, (2) software components for acquiring, 

storing, and reconstructing (in real time) a series of 2D US images into a 3D US image, 

and (3) software that displays a model of the 3D scene to guide and record the biopsy 

core locations in 3D.   

2.2.1 Mechanical Tracking System  

The mechanical assembly consists of a passive four degree-of-freedom tracking device, 

an adaptable transducer cradle and a hydraulic support (Figure 2.2).  The transducer 

cradle mechanically locks and fastens a commercially available end-firing TRUS 

transducer.  The tracking device and transducer cradle are secured by the hydraulic 

support, which stabilizes the mechanical assembly while the physician performs a biopsy.  

When the TRUS probe is maneuvered, the software records the 3D position and 

orientation of the transducer tip via absolute encoders as described below.  

 The end-firing TRUS transducer (with the biopsy needle guide in place) is 

mounted to the mechanical tracking mechanism where the US probe is free to rotate and 

slide along its long axis (Figure 2.3, wrist joint axis of rotation: J3).  This allows the 

physician to insert the TRUS transducer through the patient’s rectum to view the prostate 

and to rotate the TRUS transducer to acquire a 3D image.  The tracking linkage contains 

angle-sensing encoders (Figure 2.3) mounted to each joint to transmit the angle between 

the arms to the computer.  This encoder arrangement allows for the continuous 

computation of the position of the transducer needle guide as the transducer is 

manipulated in the rectum. 
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Figure 2.2: Photograph of the tacking system to be used for 3D US guided prostate biopsy.  The system is 

mounted at the base to a hydraulic actuated stabilizer while the linkage allows the TRUS transducer to be 

manually manipulated about a RCM, to which the center of the probe tip is aligned. The spring loaded 

counterbalance was designed to fully support the weight of the system throughout its full range of motion 

about the RCM. 

The mechanical tracking device is a spherical linkage assembly that consists of 

three links and three hinged connections.  The axis of each hinged connection converges 

to a common point to produce a remote center of motion (RCM).27-29  The base link 

(Figure 2.3, L1) defines the reference axis of the proposed coordinate system and is fixed 

to a multi-jointed stabilizer (Figure 2.3: L1) that attaches to a cart.  The angle between 

each hinged connection in the mechanism defines the size and shape of the operating 

envelope of the kinematics frame, which allows for two degrees of rotation (pitch and 

yaw) about the RCM.  
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Figure 2.3: A front perspective view of the mechanical tracker, which in turn is attached to a multi-jointed 

stabilizer at L1. The RCM is at the intersection of the primary, secondary and tertiary axes. The encoders 

mounted at the pivot J is used to measure the relative angles between the two successive links L2 and L3. 

The encoder at pivot J2 measures the angle between L1 and L2. The differential gearing mechanism, which 

is coupled to the tracking linkage, decouples the two DOF provided by the cylindrical joint J3 supporting 

the shaft, which in turn is mounted to the transducer cradle. These two degrees of mobility represent the 

probe penetration and angular orientation about its longitudinal axis respectively. Two additional encoders, 

mounted onto the wrist joint, J3, are required to measure the angle and depth of penetration of the probe 

through the differential gear train. 

 The linkage assembly supports the TRUS transducer through the distant pinned 

connection (Figure 2.3, wrist joint axis: J3) such that the long axis of the probe passes 

through its RCM.  Therefore, the angular position of the axis of the probe relative to the 

base is determined by measuring the angle between two successive joint axes.  Two 

encoders mounted at the pivots (shoulder joint axis: J1 and elbow joint axis: J2) are used 
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to measure the relative angles between the two successive linkages (Figure 2.3, links L1 

and L2) and between the link L1 and stabilizer respectively. 

 The probe is supported through the revolute axis by a sleeve and pivots and slides 

freely along the axis of the revolute joint (Figure 2.3, wrist joint axis J3).  This compound 

joint gives the tracking mechanism an additional two DOF where the probe penetration 

and relative rotation angle to the supporting frame are defined. As illustrated in Figure 

2.3, the differential gearing mechanism, which is coupled to the tracking mechanism, 

decouples the motion through the compound joint.  These two degrees of mobility 

represent the probe penetration and angular orientation about its long axis (i.e. roll angle) 

respectively. 

2.2.1.1  Forward Kinematics Equations of Motion  

The unit vector r̂  defines the 3D orientation of the TRUS tip in spherical coordinates 

relative to its fulcrum (O) (Figure 2.4):  
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 In this description, the position of the probe tip r̂ =f (φ, θ) is specified by the angle 

φ, the angle long axis of the probe makes with the z-axis, and the angle θ, which is the 

orientation of the TRUS transducer in the x-y plane.   The relationship between the 

tracker coordinate system r̂ =f (φ, θ) and the reference frame defined by the encoders 

connected at each of the hinged connections is illustrated in Figure 2.4.  The tracker arm 

configuration measured by the encoders is defined by the spherical triangle (ABC), and is 

linked to the global reference frame by the spherical triangle (APC).  

 



www.manaraa.com

32 

 

 

 

Figure 2.4: Diagram illustrating the relationship between the tracker linkage orientations relative to the 

global Cartesian reference frame. The angle between the joints A and B in link L2 (<AOB) is π/4. Likewise, 

the angle between the joints B and C connections in link L3 (<BOC) is also π/4. 

 The forward kinematics equations of motion for the open-chain linkage (Eqs. 2a, 

2b and 2c) were derived by applying the Napier analogies to spherical triangle APC 

(Figure 2.4).28  

( ) ζπψπψαθ
2

1
cot

22

1
sec

22

1
cos

2

1
tan 







 +






 −=+
    [2a] 

( ) ζπψπψαθ
2

1
cot

22

1
csc

22

1
sin

2

1
tan 







 +






 −=−
    [2b] 

( ) ( )αθαθπψϕ −+






 −= cossin
22

1
tan

2

1
tan

    [2c] 



www.manaraa.com

33 

 

 

This defines spherical coordinates of the vector r̂ =f (φ, θ) in terms of the geometric 

configuration of the linkage angles ψ and ζ (see Figure 2.4).  

 Equations 3a and 3b, which define the configuration of the linkage in terms of the 

angles measured by the encoders at the shoulder and elbow joints respectively, were 

derived by solving the right spherical triangle (ABE).28 

ξψ cos
2

1
tan =

         [3a] 

γψ tan
2

1

2

1
cot =

        [3b] 

The position of each arm (AB and BC in Figure 2.4) in the linkage was determined by 

measuring the spherical angles at each of the pinned couplings A and B respectively.  The 

encoder mounted at A measures the angle (ξ + ζ) between L1 and the x-z plane, and the 

encoder mounted at B measures the angle γ between the two arms (L1 and L2).  Equation 

(3b) is needed to decouple the values for (ξ) and (γ), required to solve equations (2a-c). 

2.2.2 Software for Acquiring and Reconstructing 3D US Images 

Before the physician acquires a 3D image of the prostate, the tracking arm is locked into 

place to prevent the TRUS probe from changing its pitch, yaw and depth of penetration 

while the probe is rotated.  As the physician rotates the transducer manually about its 

long axis (Figure 2.3, wrist joint axis: J3) to acquire a 3D scan composed of 200 images 

in one-degree increments, the 2D US images from the US machine are digitized using a 

frame grabber, and reconstructed into a 3D image.30  The last 20 images in the overlap 

region (from 180º to 200º and 0º to 20º of transducer rotation) are merged by averaging 

the duplicate images to remove any slight discontinuities that may arise from image lag31 

or small patient motion.  Our software has a graphical software interface to provide 

information to the physician on the proper rotational speed.  The software interface 

provides a visual queue to indicate if the rotation was too rapid and the 2D US image was 
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not acquired properly.  Once the 3D TRUS image has been acquired, the software then 

displays the image in a cube view (Figure 2.5).30 

 

Figure 2.5: Axial (top left), sagittal (top right) and coronal views (bottom right) of the 3D TRUS image of 

a patient’s prostate. The coronal view of the prostate is not possible using the current 2D TRUS biopsy 

procedure. The image in the bottom left shows the live video stream from the US machine. The image 

within the green bounding box was digitized by a frame grabber as the physician rotated the TRUS 

transducer and then reconstructed into the 3D image shown in the other three windows. The bladder 

(hypoechoic region anterior to the prostate boundary) and urethra are visible within the axial and sagittal 

views. 

A model of the prostate is then generated from the 3D image by a semi-automatic 

3D segmentation algorithm developed in our laboratory and described in detail 

elsewhere.31, 32  The segmentation algorithm requires that the physician selects four points 
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around the boundary of a 2D prostate cross-section.  The algorithm then segments the 

prostate by fitting a dynamic deformable contour to match the boundary of the prostate.  

The contour is then used in the adjacent slice as a template and deformed around the 

prostate boundary; the result is propagated through 180° and refined for each succeeding 

image slice.32  After the software reconstructs the image and the model, the physician can 

slice through the 3D TRUS image to select target biopsy locations.  If the procedure is a 

re-biopsy, then previous biopsy locations can be viewed for planning (see Figure 2.6.) 

 

Figure 2.6: For rebiopsy, the patient’s prostate can be viewed to show the previous biopsy plan (top left). 

In addition, the physician can also evaluate the registration by comparing the previously segmented prostate 

boundary (red line) with the currently segmented boundary (green line, bottom left corner). The coronal 

view of the patient’s prostate with the segmented boundary and circles representing the location of the 

previous biopsy cores (top and bottom right). The 3D locations of the biopsy core are displayed within the 
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3D prostate models. The targeting ring in the bottom right window shows all the possible needle paths that 

intersect the selected target by rotating the TRUS about its long axis.  

2.2.3 Software Components for 3D Tracking and Recording  

 

 

Figure 2.7: The 3D biopsy system interface is composed of four windows: (top left) the 3D TRUS image 

dynamically sliced to match the real-time TRUS probe 3D orientation, (bottom left) the live 2D TRUS 

video stream, (right side) and the 3D location of the targets displayed within the 3D prostate models. The 

targeting ring in the bottom right window shows all the possible needle paths that intersect the preplanned 

target by rotating the TRUS about its long axis. This allows the physician to maneuver the TRUS to the 

target (highlighted by the red dot) in the shortest possible distance. The biopsy needle (arrow) is visible 

within the real-time 2D TRUS image. The bladder (hypoechoic region anterior to prostate) and 

calcifications within the prostate (arrow head) illustrate anatomical correspondence between the real-time 

and static 3D image. 
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Once the 3D image scanning and biopsy plan are complete, the system displays a 

3D needle guidance interface to facilitate the systematic targeting of each biopsy 

location. Throughout the biopsy procedure, the 3D location and orientation of the TRUS 

transducer is tracked and displayed in real time.  Figure 2.7 shows the biopsy interface, 

which is composed of 4 windows: the 2D TRUS video stream, the 3D TRUS image, and 

two 3D model views.  The 2D TRUS window (bottom left) displays the real-time 2D 

TRUS image streamed from the ultrasound machine. The 3D TRUS window (top left) 

contains the 3D TRUS image sliced in real time to correspond to the orientation and 

position of the TRUS probe.  This correspondence allows the physician to compare the 

static 3D image with the real-time 2D image.  Finally, the two 3D targeting windows 

show (i) the coronal and perspective views of the 3D prostate model, (ii) the real-time 

position of the 2D TRUS image plane, (iii) and the expected path of the biopsy needle as 

defined by the biopsy guide. 

The targeting windows aid the physician in guiding the needle to each preplanned 

target.  The targeting circle on the screen (Figs. 2.6 and 2.7) illustrates all accessible 

needle trajectories by rotating the US probe about its long axis.  This shows the physician 

the shortest distance to each preplanned target.  

2.3 System Validation Methods 

We used an HDI 3500 US system and C9-5 (9-5 MHz) TRUS probe (Philips Medical 

Systems, Seattle, WA) in the following experiments.  The resolution of the Philips scan 

head was determined experimentally by measuring the diameter of a wire (full width at 

half maximum) within a preset focal zone 3 cm deep in a bath of distilled water and 7% 

glycerol by weight, giving a speed of sound of 1540 m/s at a temperature of 20°C.  The 

axial, lateral and elevational resolutions were 1.2, 1.4 and 2.5mm respectively. 

2.3.1 Geometric Reconstruction 

 The accuracy of 3D geometric reconstruction of the TRUS image based on 

manual rotation of the transducer was verified using a string phantom,33 which was 
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immersed in a bath of distilled water and 7% glycerol (by weight).  The string phantom 

consists of four layers of orthogonally intersecting monofilament nylon string with a 

diameter of 0.10 mm, which are anchored to the sides of a brass frame of the following 

dimensions:  12.2 cm (length) by 12.2 cm (width) by 3.0 cm (height).  The intersections 

of the strings and each of the layers are spaced 10 mm apart, and each layer is offset by 

2.5 mm so that upper layers of strings do not shadow the subsequent layers.  

 The tracking apparatus was positioned with the tip of the TRUS transducer placed 

below the surface of the glycerol solution.  The transducer was then manually rotated 

200° around its long axis (z-direction) to acquire a 3D US image of the string phantom. 

Using this 3D image, the spacing between the strings was measured in the three principal 

views {(x,y), (x,z), and (y,z)}.  The measurements for each plane were then repeated 

fifteen times, and the mean, standard deviation, and the standard error for ∆x, ∆y, ∆z 

were then determined. 

2.3.2 3D Segmentation 

A certified Ultrasound Calibration Phantom, which is constructed of Zerdine®, 

(Computerized Imaging Reference Systems Inc, Norfolk, Virginia) was used to assess the 

accuracy of volumetric measurements.  The phantom had an embedded 21.5 cm3 egg-

shaped object 1 cm below the surface of the phantom, simulating the location and size of 

a small-to-medium sized prostate.  

 To verify the 3D segmentation accuracy of our system, the reconstructed volume 

of the embedded egg-shaped object was compared to that of its known volume.  A 3D 

TRUS image of the phantom was acquired and the semi-automated segmentation 

algorithm was used to generate a 3D model of the embedded object.  The volume of the 

segmented model was then compared to the certified volume of the object to quantify the 

volume measurement error of the 3D segmentation.  The phantom was independently 

scanned 15 times and each object was semi-automatically segmented using the software 

described in section 2.2 to calculate mean and standard deviation values for the volume 

error.  The volume error Verror(V, V*) was defined as the percentage difference between 

the reconstructed volume, V, and the known volume of the scanned object V*: 
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 To determine the impact the semi-automated segmentation algorithm has on the 

volume error, the following volume metrics were used to compare the reconstructed 

volume to a manually segmented volume as a gold standard.34 The sensitivity S(V, Vman) 

was used to determine the portion of the reconstructed volume, V, that intersects the 

manually segmented volume Vman:  
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The difference D(V, Vman) was used to measure the proportion of the segmented volumes 

that is not correctly overlapped:  
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2.3.3 Mock Biopsy on Prostate Phantoms 

Mock biopsy procedures were performed on an agar-based tissue-mimicking phantom to 

quantify the accuracy of the 3D TRUS system for guiding biopsies and recording the 3D 

location of the biopsy core.  The agar phantom consisted of an agar-based prostate 

model35 embedded in surrounding background agar.34, 35  The background and prostate 

model were constructed by adding 7% by mass of glycerol solution with agar powder to 

produce a speed of sound similar to that of human tissue (1540 m/s).30 The mould of the 

prostate model was generated from segmented 3D image of a human prostate (volume = 

21.5 cm3).  The background material contained cellulose (15% by weight) to create 

acoustic backscattering in US, making the surrounding region appear bright relative to 

the prostate.  Tungsten powder (1% by weight) was added to the prostate model to 

increase the X-ray attenuation within the prostate, making it visible in the CT image.  

Finally, stainless steel ball bearings of 1 mm diameter were placed in a geodesic 

configuration within the background material, surrounding the prostate model.  These 
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ball bearings served as fiducials for coordinate registration between the 3D TRUS and 

CT images. 

 Six independent mock biopsies were performed on five prostate phantoms for a 

total of 30 cores, using the 3D TRUS biopsy system.  To start the procedure, the tracking 

apparatus was positioned with the tip of the TRUS transducer contacting the surface of 

the agar phantom and aligned with the center of the prostate gland immediately adjacent 

to its posterior aspect.  A 3D TRUS image of the prostate was then acquired (and 

reconstructed) by manual 200° rotation of the TRUS probe about its long axis and was 

reconstructed in a cartesian reference frame with isometric voxel dimensions (0.194 

mm3).  A semi-automated segmentation was then used to generate a 3D segmented model 

of the prostate.30-32, 34 A traditional sextant biopsy plan was followed, with contralateral 

biopsy targets placed at the base, mid-gland, and apex of the prostate.  A systematic 

biopsy of each target was performed and the location of each biopsy core was recorded 

within the 3D system (e.g. Figure 2.7). 

 The agar phantom was imaged, post-biopsy, in an eXplore Locus Ultra Pre-

Clinical CT scanner (GE Healthcare, London, ON), which is used for small animal 

micro-imaging.  The high resolution CT image (isometric voxel dimensions of 0.15 mm3) 

served as the gold standard for the true location of each biopsy core.  In the CT image, a 

biopsy core was evident as an air track left from the insertion of the 18-gauge needle into 

the agar phantom.  The location of a biopsy core was extracted from a CT image by 

selecting multiple points along the center of the air track, from the base to the tip.  A 

linear regression of the points was used to define the 3D trajectory of the needle, and the 

location of the 19 mm biopsy core was defined relative to the tip of the air track.  The 

centers of the 1 mm fiducial markers surrounding the prostate were manually selected 

from corresponding CT and 3D TRUS images to co-register the two coordinate systems.  

2.3.3.1 Biopsy System Errors 

The 3D biopsy system was evaluated for its ability to (a) guide a biopsy needle to a 3D 

target and (b) record the location of the biopsy core in 3D following the methods 

described by Cool et al.34  The process of directing a biopsy needle toward a target using 
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the 3D TRUS system has human, machine, and tissue factors as all potential sources of 

error.  The needle guidance error, NGE, measured the mean complete error associated 

with a user guiding the biopsy needle to predefined targets.  This error was quantified for 

all biopsy sites, n as the perpendicular distance between the i th target location (ai) and the 

corresponding “true” biopsy core identified in the 3D CT image (bi
CT): 

( )1
,

n CT
i ii

D a b
NGE

n
== ∑

,        [6] 

where D( ) is a function measuring the 3D minimum distance between a 3D target point, 

ai, and a 3D biopsy core line segment, bi
CT.  NGE is composed of two quantifiable errors: 

one related to human guidance error, NGHE, and the other related to the needle trajectory 

error, NTE.  Conceptually, NGHE represents the ability of the user to align the biopsy 

target within the center of the expected needle path of the biopsy system.  NGHE was 

measured by comparing the 3D Euclidean distance between the biopsy targets, ai, and the 

expected path of the biopsy needle, pi, within the 2D TRUS image: 
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 It should be noted that the preplanned biopsy targets, ai, were virtual targets, fixed 

within the 3D TRUS system tracking space, not within the real 3D world.  Therefore, 

both the target, ai, and the expected needle path, pi, were within the same 3D tracking 

space and NGHE was only influenced by human errors and not by errors in the 3D 

system, such as positional tracking error, inaccurate system calibration, poor 3D TRUS 

image to world correspondence, etc. 

 Needle trajectory error, NTE, was calculated to determine how well the biopsy 

needle traveled along the expected biopsy needle path, pi, defined by the TRUS 

manufacturer.  NTE was measured within the 2D TRUS image plane and defined as the 

minimum distance between the actual needle trajectory, bTRUS, and the expected needle 

trajectory, pi : 
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 The accuracy of the biopsy system to record biopsy core locations in 3D (Biopsy 

Localization Error or BLE) was quantified using three metrics: BLEmin, BLEcenter, and 

BLEθ.  BLEmin is defined as the minimum distance between the “true” biopsy core from 

CT, bi
CT, and the record 3D TRUS biopsy core, bi

TRUS.  
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where D( )  measures the minimum distance between two 3D biopsy core line segments.  

BLEθ is the angle between the cores when projected on a plane perpendicular to BLEmin:  
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where θ(u,v) is the function that calculates the minimum angle between vectors u and v.  

BLEcenter is the center-to-center distance between corresponding biopsy cores: 
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where b(0.5) represents the center point of the 19 mm biopsy core b.  

2.3.4 Clinical Evaluation 

The 3D biopsy system was tested clinically on three patients to determine the extent of 

prostate motion and deformation, and the system’s impact on workflow.  All subjects 

provided written consent to the study protocol approved by The University of Western 

Ontario Standing Board on Human Ethics prior to imaging.  The workflow of the current 

2D standard procedure was maintained with the addition of a 10-second 3D US scan at 

the start and end of the procedure.  Anatomical landmarks such as the prostate boundary 

or calcifications within the patient’s prostate were used for qualitative comparison of the 
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real-time 2D TRUS image with the 3D TRUS image to identify correspondence issues 

resulting from prostate deformation, patient motion or tracking inaccuracies.  

 An in-plane quantitative assessment of prostate motion and deformation was 

evaluated by measuring the distance between calcifications found in the 2D slices of a 3D 

TRUS image, which is generated at the start of the procedure to the real-time 2D US 

images obtained at a later time.  We defined the in-plane displacement as the absolute 

distance between the true location of the landmark and its location within the initial 3D 

image.  

2.4 Results 

2.4.1 Geometric Reconstruction 

A 3D TRUS image of the string phantom was successfully reconstructed without 

significant visible discontinuity or probe alignment artifacts.  Table 2.1 show the 

distances between the strings within the phantom measured in the three orthogonal views 

{(x, y), (x, z), (y, z)}.  The distance measured in each plane overestimated the known 

manufactured inter-string distance, with measured errors varying from 3.1% to 4.0%.  

 

Table 2.1: Results from the 3D geometric reconstruction experiment illustrating the mean distance between 

the strings, the measurement error (|u-u0|), standard deviation (STD), and the number of data points (n). 

 Y-Z Plane X-Z Plane X-Y Plane 
y z x z x y 

Mean 10.38 10.65 10.40 10.62 10.37 10.38 
|u-u0| (mm) 0.38 0.35 0.40 0.32 0.37 0.38 

Error (%) 3.80 3.40 4.00 3.11 3.70 3.80 

STD (mm) 0.11 0.14 0.13 0.14 0.14 0.12 

n 45 45 45 45 45 45 
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2.4.2 3D Segmentation 

Table 2.2 shows the results from the scan of the phantom and the segmentations of the 

3D object.  Multiple 3D TRUS images were successfully reconstructed from the certified 

industrial US phantom.  The egg shaped object resembling a prostate was segmented 

using both the semi-automatic segmentation algorithm with a mean volume error of 

4.7%.  Furthermore, the reconstructed prostate models overlapped with the gold standard 

volumes with a sensitivity of 95.4%, and difference error of 7.5%. 

 

Table 2.2: The volume of the segmented model was compared to the certified volume of the object to 

quantify the volume measurement error of the 3D segmentation.  The volume error (eq. 4) compares the 

difference between the reconstructed volume, V, and the known volume of the scanned object, V*=21.5 

cm3. The following volume metrics were used to compare the semi-automated segmented volume to a 

manually segmented volume. The sensitivity (eq. 5a) was used to determine the portion of the reconstructed 

volume, V that intersects the manually segmented volume Vman, and the difference (eq. 5b) measured the 

proportion of the segmented volumes that is not correctly overlapped: 

Volume-based Metrics  

Semi-automatic segmented Volume 20.49±0.16 
Manually Segmented Volume (cm3) 20.83±0.16 

Overlap Volume (cm3) 19.88±0.26 

Volume Error (%) 4.69 

Sensitivity (%) 95.44 

Difference (%) 7.50 
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2.4.3 Needle Guidance 

The quantitative results for 3D biopsy needle guidance and recording of biopsy cores are 

summarized in Table 2.3.  Navigation of the biopsy needle to each target had a mean 

NGE = 2.13 ± 1.28 mm.  A one-tailed t-test showed the needle-guidance error was 

statistically less than 5mm (p<0.001, B=0.2, n=30), which is the smallest tumour 

considered clinically significant.36 Figure 2.8 shows a plot of the NGE, which is 

decomposed into in- and out-of-plane errors.  The needle deflection is primarily in-plane 

with little out-of-plane error.  Human navigation error in directing the probe to the biopsy  

 

Figure 2.8: (a) Scatter plot of the in-TRUS plane vs. out-of-TRUS plane needle guidance error, NGE.  The 

diagram (b) illustrates the relative orientation of the TRUS to the target and the scatter plot. The scatter plot 

in is a cross-sectional plane, perpendicular to the 2D TRUS image plane, where the plot's x-axis 

corresponds the x-axis of the TRUS image (positive and negative x values are more lateral and more medial 

in the TRUS image, respectively) and the plot's y-axis is parallel to the normal of the 2D TRUS image 

plane.  The origin of the plot is centered on each biopsy target point, xi, with the “true” biopsy core 

location, bi
CT, plotted with an “x”. This diagram illustrates the relative orientation of the TRUS.  

target, NGHE, had a mean error of 0.54±0.41 mm.  Trajectory error of the biopsy needle 

deviating from the expected needle path, NTE, was 2.08±1.59 mm.  Figure 2.9a shows a 

comparison of the 3D biopsy cores for an 18-gauge needle.  The biopsy cores overlapped 
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with each target (white spheres) showing that the needle was successfully guided to each 

biopsy target location.  Figure 2.9b shows a qualitative comparison of the 3D biopsy 

cores recorded using the 3D TRUS system (black) with the gold standard cores (white).  

The biopsy cores were accurately localized to 1.51±0.92 mm (BLEmin) and with a mean 

angulation difference of 6.68±2.23º (BLE�).  The center-to-center distance (BLEcenter) 

between corresponding biopsy cores was larger than BLEmin, at 3.87±1.81 mm. 

 

Figure 2.9: (a) Coronal view of the prostate as viewed from the end of the TRUS probe shows the CT gold 

standard biopsy cores (black cylinders) and the corresponding biopsy targets (grey dots). (b) The image on 

the right shows the coronal view of the prostate model with the US biopsy cores recorded within the 3D 

biopsy system (black) and the corresponding CT gold standard biopsy cores (white). The cylinders 

represent the 18-gauge biopsy core tissue samples. The data highlighted in Table 2.3 was used to construct 

the phantom images. (c) Illustration of the simulated prostate orientation within the agar phantom with 

respect to the TRUS probe. 



www.manaraa.com

47 

 

 

Table 2.3: 3D biopsy system accuracy based on the biopsy core analysis described in section 2.3.3. Needle 

guidance error, NGE (eq. 6), needle guidance human error, NGHE (eq. 7), and needle trajectory error, NTE 

(eq. 8), all evaluate biopsy targeting accuracy. The biopsy localization metrics BLEmin, BLEcenter and BLEθ 

(see eq. 9-11), indicate the errors in recording the 3D location of the biopsy cores. 95% CI represents the 

confidence interval of the mean. All of the values are reported as Mean±STD. The results from the 

experiment highlighted in bold are illustrated in Figure 2.9. 

Experiment 

System Accuracy Localization Error Metrics 

NGE 
(mm) 

NGHE 
(mm) 

NTE 
(mm) 

BLE min 
(mm) 

BLEcenter 
(mm) 

BLEθ 
(degrees) 

1 3.79±0.86 0.37±0.51 4.41±0.27 1.93±0.75 3.98±1.45 5.65±2.04 
2 0.70±0.32 0.27±0.12 1.44±0.46 1.08±0.61 3.82±2.52 5.61±3.30 

3 1.95±0.39 0.19±0.09 1.97±0.59 2.39±0.98 4.07±1.22 7.76±2.01 

4 2.21±1.39 0.99±0.08 2.06±1.94 1.20±0.67 4.34±3.17 6.46±2.55 

5 1.99+0.77 0.90±0.11 0.50±0.51 0.97±0.92 3.13±2.00 7.93±1.20 

Mean 2.13+1.28 0.54±0.41 2.08±1.59 1.51±0.92 3.87±1.81 6.68±2.23 
95% CI (1.7, 2.6) (0.4, 0.7) (1.5, 2.7) (1.2, 1.8) (3.2, 4.5) (5.9, 7.9) 

 

2.4.4 Clinical Evaluation 

Figure 2.5 shows axial, sagittal and coronal views of the 3D TRUS image of a 

patient’s prostate that were obtained during a biopsy procedure.  There were no obvious 

discontinuities or artifacts within the 3D image, even in the coronal plane, which lies 

perpendicular to the axis of rotation for 3D scanning.  

Figure 2.10 shows a sequence of images that were captured during a sextant 

biopsy at the start (top row), mid-point (3rd) biopsy (middle row), and at the end (bottom 

row) of the procedure.  The 2D slice from the 3D static image (Figure 2.10, left column) 

is shown with the prostate boundary in green.  The corresponding 2D real time video 

stream (Figure 2.10, middle column) displays a dotted outline of the prostate boundary 

from the 3D image.  The images in the right column show the real time 2D TRUS images 

after needle insertion (Figure 2.10, white arrow).  There is a strong correlation between 

the real-time 2D TRUS image (middle column) and the original 3D image (left column) 

time point, suggesting that there were no major changes in the prostate at each location 

and morphology during the biopsy procedure.  Alignment between the initial 3D and real- 
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Figure 2.10: A sequence of images captured at the beginning (top row), midpoint (middle row) and end 

(bottom row) of a sextant biopsy procedure. Left column: The 2D slice from the 3D static image is shown 

with the prostate boundary segmented in green.  The circle represents the pre-planned target, and the 

parallel lines show the estimated location of the biopsy core. Center column: The corresponding 2D real-

time video stream displays a dotted outline of the prostate boundary from the 3D image in the left column.  

The location of the pre-planned target is highlighted by the circle on the 2D image, and the extents of the 

biopsy notch (19 mm) are designated by the two horizontal lines. Spatial correspondence is maintained 

even after needle insertion (white arrow) as seen in the real time 2D TRUS images (right column). White 

speckled calcifications within the prostate boundary (small arrowheads), cysts (large arrowheads) and the 

location of the segmented prostate boundary show good correspondence between the real-time (center 

column) and static 3D image (left column) throughout the entire procedure. 
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time image was maintained throughout the entire procedure, even after six biopsies 

(bottom row).  Similar anatomical landmarks (Figure 2.10, calcifications) were visible in 

both the 3D and real-time 2D images, indicating a good correlation.  The mean in-plane 

displacement of calcifications used as anatomical markers identified in images obtained 

within the prostates of 20 patients was 0.74±0.71 mm (see Table 2.4).37  The measured 

in-plane displacements of calcifications as well as the maintenance of good correlation 

between the images in each row suggest that the prostate did not move or deform to a 

prohibitive extent. 

Table 2.4: Mean in-plane displacement of anatomical landmarks identified in three patients participating in 

an ongoing clinical trial. The standard deviation (STD), maximum and minimum displacement, and the 

number of landmarks (n) identified in the images are reported. 

 Displacement 
(mm) 

Mean 0.74 
Maximum 6.78 

Minimum 0.03 

STD 0.71 

n 670 

 Figure 2.11 shows a case where the patient moved during the procedure.  The 2D 

axial slice from the initial 3D image does not correlate well with the 2D TRUS image 

from the US machine.  The prostate has moved from its original scanned position and the 

shape of the prostate boundary has also changed. 
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Figure 2.11: Comparison of (a) the 2D axial slice of the 3D TRUS image with (b) the real-time 2D TRUS 

image captured immediately after the biopsy gun was fired; the needle is still visible in the image on the 

right (arrow). If the patient moves during the procedure, not only does the prostate move from its original 

scanned position, but also its shape changes. The prostate boundary next to the TRUS tip is concave in the 

2D axial slice, and convex in the real time snapshot. The discontinuity in the 3D image highlighted by the 

arrowheads was the result of patient motion during a 3D scan. The bladder (hypoechoic region anterior to 

the prostate boundary) and urethra are visible in each image. 

2.5 Discussion  

Volume calculations from the ultrasound phantoms were within five percent of the 

certified standard and the shape-based metrics (sensitivity = 95%, error = 4.7%) show a 

high degree of overlap correspondence.  Together with the string phantom results they 

suggest that geometrical distortion due to manual rotation of the transducer and semi-

automatic segmentation algorithm were not significant.  

 The user was able to use the system to accurately guide a biopsy needle in vitro to 

predefined targets with an average error of 2.1 mm.  This error was primarily due to the 

large NTE as a result of needle deflection in our prostate phantom.34 In spite of this error, 

the targeting accuracy was within the 5 mm radius of the smallest tumours considered 

clinically significant (tumour radius less than 0.5 cm is considered insignificant).36  
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 From the results of our ongoing patient study, we were able to guide the biopsy 

needle to pre-determined targets and maintain proper correspondence of our real-time 2D 

and 3D images by minimizing prostate motion through a variety of mechanical and 

software mechanisms.  By providing mechanical means to stabilize and support the US 

probe, constant pressure between the probe and rectal wall was maintained.  The remote 

fulcrum (located at the anus) further stabilized the pressure by minimizing motion 

between the RCM and probe tip.  Further, constant pressure on the prostate was 

maintained with the probe tip by simply pivoting about the RCM.  To complement this 

mechanical feature, we implemented a visual ring representation in the software interface 

where the axis of the needle intersects the depth of the pre-selected target (Figure 2.5).  

This ring provides visual guidance in manipulating and orienting the probe to the target in 

the shortest distance possible, while minimizing motion of the probe and maintaining 

constant pressure on the prostate.  The shortest path is the minimum yaw and pitch angle 

needed to align the needle guide to a predetermined target.  This is accomplished by 

rolling the probe and changing the pitch angle to align the needle axis with the target.  

Although minimizing probe motion and its effects on the prostate would be preferred, it 

is also important the physician avoids the urethra and nearby organs (including the 

bladder).  This imposes restrictions on the entry points as it is necessary for the physician 

to be able to see sensitive areas so they can be avoided. 

 Patient motion on the biopsy table that cannot be controlled (see Figure 2.11) or 

prostate motion would result in the real-time 2D image not matching the 2D 

corresponding slice from the 3D TRUS image.  This would provide a visual warning to 

the physician that the pre-selected targets are no longer valid, requiring the physician to 

perform another 3D scan.  Prostate motion can be corrected by registering the planned 

and recorded biopsy locations in the 3D US image to the current image after the prostate 

has moved.  Although patient motion during the procedure is infrequent, correction for 

patient motion errors is a focus of our future work. 

2.6 Conclusions 

By adding 3D information to the prostate biopsy procedure, our system should improve 

the recording procedure as well as the physician’s ability to accurately guide the biopsy 
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needle to selected targets identified using other imaging modalities.  This would be 

beneficial in cases where the patient was diagnosed on biopsy to have ASAP and requires 

the physician to rebiopsy the same area.  Using the 3D TRUS image, the physician was 

able to observe the patient’s prostate in views currently not possible in 2D procedures.  

Overall, our 3D system should result in prostate biopsy procedures that are stereotactic 

and more reproducible, which may lead to higher cancer detection rates and improve the 

yield on repeat biopsy 

 Finally, integration of our system into the current prostate biopsy procedure 

requires minimal physician retraining as procedural workflow is maintained.  By 

adhering to the imaging tools and protocols of current biopsy procedures, clinical 

integration of our 3D system should be cost effective. 
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Chapter 3  

3 A Compact Mechatronic System for 3D Guided Prostate 
Interventions 

3.1 Introduction 

There has been an increase of 20% in the number of men diagnosed with prostate cancer 

(PCa) in the last decade, and this trend is projected to continue in the future, due to the 

demographic shift towards higher proportions of older men and the increased use of the 

prostate-specific antigen (PSA) blood test.1-4  The use of the PSA test for early detection 

of PCa and the public’s increased awareness about the disease have combined to increase 

the proportion of PCa diagnosed at an early and organ-confined stage, and in younger 

men.1, 5  Improvements in transrectal ultrasound (TRUS) imaging, computer-aided 

dosimetry, and new treatment options have stimulated investigators to develop minimally 

invasive therapies for localized PCa, such as brachytherapy, cryosurgery, high-intensity 

focused ultrasound, and laser thermal ablation.  Although transperineal TRUS-guided 

brachytherapy is the most advanced because of its high-dose delivery rates and low risk 

of incontinence and impotence, intense research is ongoing into improved and alternative 

forms of minimally invasive prostate therapy.  However, in all these transperineal therapy 

techniques, it is critical that the needles be placed accurately within the prostate to deliver 

the therapy to the planned location and avoid damaging surrounding tissues.6, 7  

A limitation of current TRUS-guided prostate brachytherapy involves the use of a 

template-based technique, which restricts the placement of radioactive seeds within the 

prostate.  This technique uses a square template, which contains a series of holes spaced 

5mm apart in a Cartesian grid.  Using this template, needles are guided by the grid 

parallel to the long axis of the US transducer.  However, due to the 5 mm spacing 

increments between the guidance holes, positioning of needles during the procedure is 

limited.  Moreover, the use of this template is problematic for patients with enlarged 

prostates as a portion of the prostate may be occluded by the pubic arch. With the 

interference of the pubic arch, a parallel needle insertion is inadequate for targeting this 
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occluded region of the prostate.  As a result, there may be sub-optimal dose coverage of 

the prostate.8  

There are an estimated 50,000 prostate brachytherapy procedures performed each 

year in the United States,9 of which 17 to 27% of these patients have been reported to 

have preoperative pubic arch interference (PAI), and 6 to 19% of these cases had intra-

operative PAI requiring the physician to alter the preplanned needle trajectory.10, 11  

These estimates could be higher as seed implants are not recommended for men with 

prostates larger than 60cm3, 12.  One method currently used to deal with this problem is 

downsizing of the prostate using androgen deprivation therapy. Unfortunately, there are 

many drawbacks with using hormones, because negative side effects include sexual 

dysfunction, endocrine abnormalities, cardiovascular disease,13 and increased health care 

costs.10  To overcome intra-operative PAI, techniques like extending the lithotomy 

position, changing the probe angle,10 gently bending the template guided needle using a 

manipulation ruler,14 or inserting the needle using the freehand technique have shown 

success.10  The problem with changing the patient orientation or probe angle is that the 

position of the prostate will change with respect to the preoperative image the plan was 

created on.  Also, by using the manipulation ruler or freehand technique, the needle 

becomes decoupled from the image, thus forcing the physician to visualize the needle 

trajectory relative to the anatomy displayed in the image.  It would be beneficial to 

develop an interactive needle guidance system for the procedure while preserving some 

of the user familiarity. 

As there is a clinical need for an improved prostate therapy system, special 

purpose robotic TRUS therapy systems have emerged in the literature.  Several 

researchers have developed robotic systems to improve targeting accuracy and needle 

coverage of the prostate.  Phee et al. (2006) developed an automated system that delivers 

needles through a single entry point on the perineum, requiring only two degrees of 

rotation about a remote-center-of-motion (RCM).15  A remote center of motion is a 

constrained motion where a portion of the machine can only pivot about a fixed point in 

space.16 However, the problem with this approach is that inserting many needles through 

a single entry point would result in significant tissue damage at the entry point.  To 
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overcome the issue of using a fixed entry point, Bassan et al. (2009)17 developed a 

robotic system that consists of a five degree-of-freedom (DOF) RCM manipulator 

supported by an adjustable passive arm (Yousef et al., 2006)18 to position the robot.  The 

advantage of these two systems is that the robotic devices can be manually positioned by 

the physician with little training.  Fichtinger et al. (2006) developed a six DOF robotic 

arm to control a needle with three degrees of translation and three degrees of rotation 

about a RCM.19 Wei et al. (2004) demonstrated that an industrial serial link robot can 

also be adapted to the procedure.20  The limitations with these designs is that the imaging 

system is not directly coupled to the robotic needle manipulator, thus requiring an 

elaborate calibration procedure before each use.  

To eliminate the need to recalibrate the system, Yu. et al. (2007) developed a 16 

DOF robotic system to control both the TRUS probe and the needle,21  which were fixed 

to a common base.  Hu et al. (2007) also developed an automated system that is coupled 

directly to the US transducer.22  This system consists of a three DOF needle positioning 

gantry, a two DOF US probe, a two DOF needle driver, and a one DOF seed pusher.  

Unfortunately, these systems are too bulky, and obstruct the physician’s view making 

them difficult to integrate into a clinical setting.  

More recently, Salcudean et al. (2008) have developed a compact four DOF robot 

design and needle driving apparatus that can be mounted on a standard brachytherapy 

stepper.23  Other compact robotic designs incorporating rotary and/or linear stages have 

also been developed by Hungr et al. (2009)24, and Meltsner et al. (2007)25.  Fichtinger et 

al. (2008) also designed a compact 4 DOF robotic device for the TRUS procedure by 

coupling the needle to computer controlled x-y stages using spherical misalignment 

bushings.26  This system was originally developed by Kettenbach et al. (2005) for US 

guided biopsy,27 and offers an improvement to the earlier prototypes.  Not only are these 

robotic manipulators relatively compact, but by fixing the robot directly to the TRUS 

probe, the system does not need to be recalibrated before each procedure.  However, 

since these devices, as well as the other robotic devices previously described, cannot be 

rear-driven, the physician must rely on the software or manual adjustment knobs to 

control the system and align the needle with the target while avoiding obstacles like 
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previously inserted needles or the TRUS probe.  Although the inability to rear drive a 

system can provide rigidity for needle insertion,23 the physician does not have direct 

control over the needle placement.  Without sufficient training, it may be difficult to 

successfully manipulate the needle positioning device and this may result in added 

complexity to the procedure.  

Other groups have developed image guided robotic systems that use CT28 and 

MRI29.  Numerous other approaches including needle drilling30 and tapping31 have shown 

a decrease in prostate motion during needle insertion.  However, these designs are non-

standard techniques that require a modified surgical procedure. 

Commercial robotic systems like the da Vinci Surgical System for endoscopic 

surgical procedures (Intuitive Surgical, Sunnyvale California), B-RobII designed for CT 

interventions (ARC Seibersdorf Research GmbH, Vienna, Austria), or the 

INNOMOTION MRI-compatible device (Innomedic, Herxheim & FZK Karlsruhe 

Germany & TH Gelsenkir) could also be adapted to guide a brachytherapy needle.  An 

advantage of a commercial system is that these systems are FDA/Health Canada 

approved, which may reduce the time required to adapt to a new procedure.  However, 

the workflow required to operate these systems differs significantly from current US 

guided brachytherapy protocols, thus requiring physicians to retrain themselves.  

Additionally, surgical robotic systems are expensive; it would be beneficial to develop an 

affordable solution without monopolizing the use of expensive equipment. 

Ideally, any of the previously described robotic devices can be used to improve 

the needle placement accuracy before insertion and reduce procedure time by 

automatically placing the needle in the correct orientation at the patient’s perineum.19, 21 

However, since US does not produce any harmful radiation and the risk of exposure from 

brachytherapy seed loading devices like the Mick® applicator (Mick Radio-Nuclear 

Instruments, Inc., Mount Vernon, NY) is not a concern, it is difficult to justify the use of 

an automated needle placement and insertion approach to improve safety or PAI.  

Although many robotic devices have been used successfully in a clinical setting, guiding 
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a tool within the human body under computer guidance can produce potential hazards if 

the robot malfunctions. 

Our objective is to develop a mechanical assisted prostate therapy system, which 

facilitates the physician in performing transperineal prostate therapy procedures, in which 

the needle can be positioned (i.e., readied for insertion) manually with improved 

resolution and flexibility, and the needle insertion into the prostate is done manually by 

the physician.  Our approach to the problem differs from the robotic systems previously 

developed in that many of the benefits of a robotic system (accuracy and improved needle 

coverage) can be realized with the option to control the needle location and trajectory 

(including oblique) manually.  

Our system has undergone a number of important design changes since our first 

computer-controlled needle positioning prototype.32  Although the device can be 

computer controlled, to deal with the safety issues of using a fully automated robotic 

device, we propose this device should be used manually in a clinical setting.  Since the 

system is back drivable when the unit is powered down, we could simply disconnect the 

power from the motors (except for the 3D scanning motor) or physically remove the 

motors.   By doing so, the system becomes a needle tracking device with many flexible 

degrees of freedom, where the counterbalanced linkage and attached encoders support 

and track the needle position, giving the physician the same feel and level of control over 

the needle orientation as the free hand technique currently used.  This will give the 

physician the freedom to position a needle at the desired location and appropriate angle, 

before manually inserting the needle. 

By combining the original design with the principle of a fixed remote center of 

motion (RCM) and the use of 3D transrectal ultrasound (TRUS), the physician can 

interact directly with the device.  Our design offers similar benefits as the design 

proposed by Phee et al. (2006) or Bassan et al. (2009), where the device can be used 

manually by the physician, with minimal training.15, 17  The advantage offered with our 

system is that the needle entry into the patient’s skin can be adjusted with two DOF over 

the patient’s skin.  The ability to adjust the needle entry point is an important feature as 
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this allows the physician to perform both parallel and oblique needle insertions.  To 

create a mechanically constrained RCM, we combined the design concept of a spherical 

linkage originally incorporated into our mechanically assisted prostate biopsy system33 

with our original prototype32 to create a dynamically adjustable system with two degrees 

of translation in front of the patient’s perineum and two degrees of rotation about a fixed 

point on the patient’s skin.  We used a spherical linkage instead of the goniometric arc 

design used by Phee et al. (2006)15 or parallelogram linkage by Bassan et al. (2009)17 

because the spherical linkage is more compact and does not interfere with the physician’s 

ability to see the needle entry point on the perineum. 

3.2 System Design 

3.2.1 Mechatronic Device  

The needle positioning device as illustrated in Figure 3.1 comprises of an ultrasound 

transducer supported by a cradle and attached to a motorized assembly for 3D image 

acquisition, and a linkage to support the needle.32, 34  The apparatus fixes the ultrasound 

probe to a common shaft from below to which all drive motors, position encoders, and 

linkage assembly are mounted.  To automatically control the needle positioning device, 

we used four DC micromotors (MicroMo Electronics Clearwater, Florida) with a 

reduction ratio of 139:1, and integrated magnetic encoder (512 pulses per rev.).  The 

motors were coupled to the needle positioning device in series to an external differential 

gear train and slip clutch.  The differential gear train provided an additional point of 

manual adjustment for the physician through an adjustment knob (see Fig 3.1a, motor 

body), and the adjustable slip clutch protected the drive train when the system is rear 

driven by the physician.  For the 3D scanning motor, we also used a DC micromotor 

(MicroMo Electronics Clearwater, Florida) with a reduction ratio of 590:1 and integrated 

magnetic encoder (512 pulses per rev.), connected in series to a slip clutch as a means to 

rotate the transducer for acquiring 3D images. 
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Figure 3.1: Photograph of the mechanical apparatus showing the (a) four motors and (b) four encoders that 

drive the linkage.  The needle positioning device mounted below the ultrasound transducer is supporting 

the needle through a pair of spherical couplings at a compound angle relative to the long axis of the 

ultrasound transducer. The transducer is connected to a cradle, which in turn is attached to a motorized 

assembly to rotate the transducer about its long axis for 3D ultrasound acquisition. 
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The TRUS probe is also mounted onto the central shaft in order to provide a fixed 

reference and to facilitate a one-time calibration of the probe to the machine reference 

frame.  By mounting the linkage and supporting electronics below the transducer, the 

physician’s field of view is not obstructed.  The central shaft provides a fixed reference 

for all movements of the apparatus and can be used to secure the apparatus to a surgical 

table or other operating room fixture (e.g., RTP-6000 Precision Stabilizer from Radiation 

Therapy Products, Seattle, WA). 

Referring to Figures 3.1a and 3.1b, the mechatronic apparatus comprises of a 

telescoping needle guide that supports the needle through a removable needle holder.  

The needle holder with an aperture complementary to the needle diameter extends from 

the needle guide.  The needle holder shown was designed to support an 18-gauge needle 

for implantation of radioactive seeds during prostate brachytherapy.  Since the needle 

holder can be removed, other tools or needles can be adapted to the apparatus (e.g. 

cryotherapy needles or a biopsy gun and needle). 

The needle guide is supported by two parallelogram linkages by means of a pair 

of spherical couplings.  The RCM of each spherical coupling (Figure 3.2, point O) and 

attached needle guide (OFN) is permitted to telescope between the front and rear RCM 

points (OF and OR).  When the first and second parallelograms are differentially moved, 

the spherical couplings and telescoping needle guide allow the needle to be adjusted to 

any desired angular orientation in space relative to the central shaft (URUF) supporting the 

needle positioning device.  Since the needle guide axis is also aligned with each 

stationary point, any movement from either parallelogram will result in the needle guide 

axis pivoting about the stationary point of the opposing spherical linkage, thus resulting 

in no linear displacement of the intersection point “O” (OF or OR).  A desired angle of 

tool insertion can therefore be attained by calculating the corresponding positions of the 

RCM points, which are mechanically constrained by the parallelogram linkages to move 

in a plane that is perpendicular to the long axis of the supporting shaft.  Since the needle 

axis (OFN) is also angled to the needle guide axis to intersect the RCM of the front 

spherical coupling (OF), its motion becomes mechanically decoupled through the front 

spherical coupling.  
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Figure 3.2: A partial rear perspective view of the device illustrating the different components of the 

linkage mechanism. The linkage is pinned to a common shaft that serves as the coordinate reference frame 

for the needle positioning device. This mechanism is an overconstrained linkage where 13 linkage 

components are configured in a manner where the needle is confined to four DOF about two points in 

space. The mechanism consists of two pinned parallelograms supporting a needle guide through a pair of 

spherical couplings. The needle guide is pinned to the forward and connected to the rear spherical coupling 

via a telescoping slide. 

By aligning the front RCM to the patient’s skin, the planar mobility of the needle 

at the patient’s skin is decoupled from the rotational motion about the RCM and provides 

a visual queue to allow the physician to align the needle to the target within the image in 

two simple steps.  First, the physician aligns the front RCM on the patient’s skin at the 

point of entry by manipulating the front parallelogram linkage as shown in Figure 3.3a.  

The rear RCM remains fixed while the front parallelogram is moved and this changes the 
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location of the needle tip, which is aligned to the front RCM.  This gives the physician 

the flexibility to change the needle insertion point on the patient’s skin.  

 

Figure 3.3: The device is decoupled through two remote pivot points created from the spherical couplings 

pinned to each parallelogram. Since the needle guide axis is also aligned with each stationary point, any 

movement from either parallelogram will result in the needle guide axis pivoting about the stationary point 

of the opposing spherical linkage, thus resulting in no linear displacement of the intersection point. The 

physician can manually align the needle axis in two simple steps. (a) First, the physician aligns the forward 

RCM by moving the forward parallelogram (the physician would manipulate the apparatus from *). (b) 

Then by moving the rear arms (from the point *), the physician can target a point of interest within the 
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patient’s anatomy by pivoting the needle about the forward RCM to the target. The counterweights support 

the weight of the needle guide and prevent the linkage from drifting when the brakes are not applied. 

Then by manipulating the rear parallelogram from a point, as illustrated in Figure 

3.3b in the second step, a point of interest within the ultrasound image can be targeted by 

angulating the needle through the front RCM to the target.  Since the linkage mimics a 

simple lever that pivots about a stationary point on the patient’s skin when manipulated, 

as illustrated in Figure 3.3b, the physician can target a point of interest within the image 

with a mechanical advantage greater than unity.  The mechanical advantage is defined as 

the ratio of the distance between the point where the physician handles the needle guide 

and the front RCM, to the distance between the RCM and target within the image 

(represented by a dashed line in Figure 3.3b).  The parallelogram linkages were designed 

to mimic the workspace of a standard 6 cm square template commonly used for prostate 

interventions.  By using the same parallelogram configuration in the rear, the linkage is 

capable of positioning the needle guide to a maximum angle of 28º relative to the 

longitudinal axis of the transducer.  

Once the needle guide is in the correct position, it can be locked, allowing the 

needle to be inserted without concern that the apparatus will move.  As such, four 

mechanical brakes are integrated into the design of the system so that each of its 

decoupled movements is constrained, allowing the progressive reduction in degrees of 

freedom (brakes 2, 3, 5 and 7 in Figs. 3.1a and b).  Each of the four mechanical brakes 

was designed to reduce the mobility of the apparatus by constraining each link in the 

parallelogram that is pinned to the central shaft.  Each of the brakes comprises of a 

locking knob attached to a clamping screw that exerts a clamping pressure on a split ring 

that resides inside each link.  

 After the needle has been inserted, three additional brakes can be used by the 

physician to safely release the needle from the grip of the device in a controlled manner.  

This can be accomplished by applying the three constraint brakes, two parallel (brakes 4 

and 6, Figure 3.1b) and one needle guide brake (brake 1, Figure 3.1b), then releasing the 

brakes on each parallelogram linkage.  This will constrain the linkage to only one degree 

of rotational freedom about the base shaft.  This coordination can be used by the 
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physician to release the needle manually from the mechatronic device in a controlled 

manner or serve to mechanically coordinate the motion of the four motors driving the 

linkage.  Four motors (Figure 3.1a) and position encoders in association with each motor 

are mounted on the central shaft and are used for computer-controlled adjustment of the 

mechanism.  By reducing the linkage to one degree of freedom about the main shaft, each 

motor in the needle positioning device becomes mechanically constrained to rotate at the 

same speed and direction to free the needle from the needle positioning device’s grip. 

3.2.2 Software components for 3D tracking and targeting 

The TRUS probe, which is equipped with a side-firing linear array, is rotated about its 

long axis under the power of a DC motor (Figure 3.1) to acquire a 3D scan.35 The 2D 

TRUS images from the US machine are digitized using a frame grabber and then 

reconstructed into a 3D image for viewing in a cube interface.36  The 3D TRUS image of 

the prostate is then available for dosimetry planning and dynamic preplanning of needle 

trajectories. 

Once the 3D image scanning and therapy plan are complete, the system displays a 

3D needle guidance interface to facilitate the systematic targeting of each needle.  

Throughout the brachytherapy procedure, the 3D location and orientation of the needle 

axis within the image is tracked and displayed in real-time.  Figure 3.4a shows the 

targeting interface, illustrating the location of the needle track in each image.  The image 

displays the current path of the needle (yellow) and the planned needle path (pink) by 

displaying two points on the needle path.  The cross illustrates the piercing point between 

the needle axis and patient’s skin projected onto the transverse image plane, and the 

circle represents the intersection of the needle axis to the transverse image plane showing 

the location of the intended target. 
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Figure 3.4: Illustration of the 3D needle guidance interface to facilitate the systematic targeting of each 

needle. (a) Shows the targeting interface, illustrating the location of the needle track. The image displays 

the current path of the needle (yellow) and the planned needle path (pink) by displaying two points on the 

needle path. The cross illustrates the piercing point between the needle axis and patient’s skin projected 

onto the transverse image plane, and the circle represents the intersection of the needle axis to the 

transverse image plane showing the location of the intended target. To align the needle to the planned 

trajectory in a therapy procedure, the physician would first align the needle piercing point over the patient’s 

skin by moving the front parallelogram linkage as seen in figure 3.3a. (b) Then, by manipulating the rear 

parallelogram, the physician would adjust the needle trajectory about the RCM until the needle is aligned to 

the target, when the yellow circle is superimposed onto the pink circle in (c). Since the front RCM remains 

stationary while the physician manipulates the needle, the alignment of the pink and yellow crosses does 

not change. 
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To align the needle to the planned trajectory in a therapy procedure, the physician 

would first align the needle piercing point over the patient’s skin by moving the front 

parallelogram linkage, as illustrated in Figure 3.3a, until the yellow cross lies on top of 

the pink cross (as indicated by the software interface illustrated in Figure 3.4b).  Then, by 

manipulating the rear parallelogram, as illustrated in Figure 3.3b, the physician would 

then adjust the needle trajectory about the RCM until the needle is aligned to the target, 

when the yellow circle is superimposed onto the pink circle (Figure 3.4c).  Since the front 

RCM remains stationary while the physician manipulates the needle illustrated in figure 

3.3b, the alignment of the superimposed pink and yellow crosses does not change.  This 

correspondence allows the physician to directly interact with the mechanical apparatus 

and maintain direct control over its movements. 

Once the needle is aligned to the target, the physician would then apply the brakes 

to make the device rigid and then insert the needle using the 3D US image as a guide (i.e. 

with the guidance of the software interface as the tracked trajectory is annotated on the 

3D US image).  This is accomplished by continuously rotating the TRUS probe back and 

fourth over a narrow range to cover the intended needle track.37  The transverse, sagittal, 

and coronal views would then be updated in near real time and allow the physician to 

insert the needle to the correct depth and verify the actual needle path in the 3D image.38 

On the other hand, if the needle deviates from its intended trajectory, the physician can 

make small corrections to the needle trajectory while using the 3D image as a guide.39 

3.3 System Calibration Methods 

Any side-firing TRUS probe can be used with our system; however, the reported 

experimental results were obtained with a Falcon 2101 EXL Scanner and model 8808 

transducer (B-K Medical, Herlev, Denmark).  The axial, lateral and elevational 

resolutions were 1.1, 1.3 and 2.0 mm respectively.  The resolution of the B-K Medical 

transducer was determined experimentally by measuring the diameter of a wire (0.1 mm), 

full width at half maximum within a preset focal zone 3 cm deep in a bath of distilled 

water and 7% glycerol by weight, giving a speed of sound of 1540 m/s at a temperature 

of 20ºC.  
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Two calibration steps are required to link the image coordinate system to the 

needle positioning device reference: the device coordinate system calibration, and the 

image to machine calibration.20  First, the device coordinate system is calibrated to 

determine the variability and eliminate any bias resulting from the propagation of 

machining tolerances within the assembly.  Secondly, the image to machine calibration 

determines the relationship linking the two coordinate systems. 

3.3.1 Coordinate system calibration 

The needle positioning device coordinate system, which is fixed to the ground, and the 

linkage orientation define the location of the needle guide relative to the needle 

positioning device frame.  In order to validate and calibrate the position of the needle 

guide, it was manually positioned to 49 parallel positions covering every second hole of a 

standard 6 cm square brachytherapy template commonly used for brachytherapy  (seven 

rows and seven columns spaced 1 cm apart).  The orientation of the needle guide was 

determined by measuring the position of the RCM of each coupling, which gives the 

location of two points along the axis of the needle guide.  

As shown in Figure 3.5, the needle positioning device was mounted onto a 

dividing head, which in turn sat on a granite surface plate and served as the reference 

plane for the calibration procedure.  The needle positioning device was attached to a 

dividing head, which a milling machine accessory was used to precisely divide the 

circumference of the work-piece into equally spaced divisions.  For this experimental 

setup, the dividing head was used to precisely rotate the needle positioning device by 

±90º.  Since the height gauge illustrated in Figure 3.5 can only be used to measure the 

height of the tooling balls relative to the surface plate, rotating the dividing head by 90º 

allowed both the horizontal and vertical location of toolling balls to be precisely 

measured using the this set-up.  

The tooling ball is a locating component, which consists of a hardened ball 

bearing (φ9.5mm and φ12.7mm mounted to front and rear spherical couplings 

respectively) fixed to a pedestal and ground to close tolerances (5 µm misalignment 

between ball bearing center and axis of the cylindrical pedestal).  By fixing the center of 
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the tooling ball to the RCM of each coupling, two points along the trajectory of the 

needle guide axis were determined by measuring their location using the height gauge 

(Figure 3.5).  

In order to determine the variability of the calibration procedure, the tool guide 

was manually positioned to nine parallel positions over a standard 6 cm square template 

(three rows and three columns spaced 3cm apart).  The measurements were repeated five 

times at each of the nine parallel positions to determine the mean and standard deviation 

for ∆x and ∆y-the error components along the coordinate axis, which are in the plane 

perpendicular to the axis of the TRUS probe (Figure 3.2). 

Another factor that contributes to the positioning error of the device is the 

alignment error between the needle guide axis and center of the tooling ball.  The impact 

of this misalignment appears when the needle guide is oriented at an oblique angle.  The 

maximum error was determined relative to nine parallel positions (three rows and three 

columns spaced 3 cm apart) by repositioning the rear coupling RCM to the other eight 

positions to create a total of 72  oblique angles and measuring the x, y and z components 

of the displaced tooling ball using the height gauge.  

The measured positioning error along the x and y axes (Figure 3.2) for both the 

forward and rear tooling ball relative to its predicted location is illustrated in Table 3.1.  

The total displacement of the tooling ball varied from a minimum of 0.12 mm nearest to 

the encoder home position (A3 in Table 3.1) to a maximum of 0.68 mm, which 

corresponds to the most distant point from the encoder home position (F1 in Table 3.1).  

The encoder home position was measured by constraining the parallelogram arms to a 

square configuration and parallel to the x axis of the mechatronic needle guidance system 

using the height gauge and attached indicator (Figure 3.4), and recording the encoder 

readouts. 
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Figure 3.5: The device was coupled to a dividing head, which in turn sat on a granite surface plate and 

served as the reference plane for the calibration procedure. The dividing head was used to measure both the 

horizontal (x axis) and vertical position (y axis) of the tooling ball relative to the surface plate by indexing 

the chuck (and attached robot) by ±90 degrees. The height gauge was used to determine the height of the 

tooling balls that were aligned to the RCM of the spherical couplings. 

The variability of the calibration procedure for nine parallel positions for both the 

forward and rear arms was determined from five repeated measurements over three rows 

and three columns spaced 3cm apart.  The mean error values of the ∆x and ∆y are 

highlighted in grey in Table 3.1, and the standard deviation varied little, from (0.01, 0.01) 

to a maximum of (0.02, 0.04), and are not tabulated.  As the positional variability of the 

system is small (standard deviation < .045 mm) relative to the measured bias (mean error 

< 0.68mm), the accuracy of the system could be improved by eliminating the bias.  

Although the errors contributed by each parallelogram linkage are less than 1mm, the 

cumulative effect of this error is additive and would be amplified by the linkage, resulting 

in an accumulated error that may exceed the ultrasound resolution.  To eliminate this 

undesirable effect, the calibration results were integrated into the kinematics equations 
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and then subsequently used for the mock seed implantation experiment described in 

section 4.1. 

Table 3.1: Measurement results of the calibration errors (∆x, ∆y) for both the forward and rear 

parallelogram arms of the mechatronic device. The location of the tooling ball was measured five times to 

determine the mean position (highlighted in grey) at 3 cm increments in x and y over the entire area of a 

6cm square grid typically used for brachytherapy (consisting of at least seven rows [A-G] and columns [1-

7]). All other values not highlighted in grey contain only one measurement. 

Forward Parallelogram (mm, mm) 

 Horizontal Location 

A B C D E F G 

V
er

tic
al

 L
oc

at
io

n 7 0.05, 0.24 0.09, 0.30 0.15, 0.37 0.18, 0.30 0.19, 0.30 0.20, 0.30 0.22, 0.33 
6 0.05, 0.25 0.08, 0.30 0.15, 0.38 0.17, 0.34 0.17, 0.27 0.20, 0.27 0.21, 0.38 
5 0.07, 0.34 0.10, 0.30 0.13, 0.31 0.16, 0.30 0.17, 0.25 0.19, 0.26 0.20, 0.24 
4 0.10, 0.30 0.11, 0.21 0.15, 0.27 0.16, 0.26 0.17, 0.26 0.20, 0.27 0.20, 0.27 
3 0.07, 0.29 0.12, 0.29 0.22, 0.34 0.26, 0.34 0.20, 0.34 0.06, 0.30 0.26, 0.29 
2 0.05, 0.30 0.15, 0.36 0.35, 0.38 0.46, 0.33 0.35, 0.29 0.11, 0.31 0.38, 0.26 
1 0.01, 0.29 0.15, 0.29 0.43, 0.29 0.57, 0.26 0.48, 0.22 0.40, 0.24 0.44, 0.20 

Rear Parallelogram (mm, mm) 

 
 

Horizontal Location (mm, mm) 
A B C D E F G 

V
er

tic
al

 L
oc

at
io

n 7 0.44, 0.20 0.48, 0.24 0.58, 0.19 0.53, 0.25 0.60, 0.21 0.64, 0.15 0.66, 0.21 
6 0.33, 0.19 0.40, 0.25 0.42, 0.24 0.44, 0.22 0.48, 0.19 0.52, 0.21 0.66, 0.20 
5 0.20, 0.19 0.29, 0.21 0.31, 0.16 0.33, 0.21 0.34, 0.19 0.44, 0.19 0.57, 0.20 
4 0.01, 0.12 0.12, 0.19 0.19, 0.19 0.19, 0.17 0.24, 0.13 0.33, 0.17 0.35, 0.19 
3 0.01, 0.08 0.07, 0.12 0.14, 0.15 0.20, 0.19 0.22, 0.19 0.43, 0.20 0.39, 0.25 
2 -.07, 0.07 -.03, 0.16 0.05, 0.20 0.16, 0.29 0.31, 0.34 0.40, 0.29 0.41, 0.26 
1 -.21, 0.07 -.03, 0.21 0.13, 0.38 0.24, 0.53 0.41, 0.48 0.53, 0.43 0.48, 0.39 

 

The impact of the misalignment of the needle guide axis to the RCM has on the 

calibration is illustrated in Table 3.2, where the maximum displacement of the forward 

tooling ball was determined relative to the rear tooling ball position (see Figure 3.5).  

This shows an increasing error for larger oblique angles, with the maximum RCM 

misalignment of 0.18 mm when the forward and rear tooling balls are displaced from one 

another by 6 cm in the x and y directions (highlighted in bold, Table 3.2).  This 

configuration corresponds to an oblique angle of 28º relative to the calibrated parallel 

needle path. 
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Table 3.2: Results illustrating the maximum tooling ball displacement (mm) for various rear RCM 

locations relative to the forward tooling ball. The maximum displacement was determined from a total of 

72 different oblique trajectories where the rear tooling ball was displaced from nine different parallel 

trajectories in 3 cm increments over a 6 cm square grid except for the values in bold where only one data 

point was available for the given configuration (i.e. forward and rear tooling balls are in opposite corners of 

the 6cm grid pattern used in this experiment). 

 x-axis 
y-

ax
is

 

Location 
(cm) 

6 3 0 3 6 

6 0.14 0.11 0.09 0.10 0.07 
3 0.10 0.08 0.05 0.12 0.11 
0 0.12 0.05 - 0.07 0.13 
3 0.12 0.08 0.05 0.09 0.17 
6 0.13 0.11 0.10 0.11 0.18 

 

3.3.2 Image to tracker calibration 

The image coordinate system is physically linked to the needle positioning device 

reference frame to provide a fixed relationship between the image and needle positioning 

device coordinate system, thus requiring only a one-time calibration.  To determine the 

relationship between the tracker and image coordinate systems, a multilayered string 

phantom20 was constructed and mounted to the needle positioning device to constrain the 

string intersections to a known location.  The string phantom consisted of four layers of 

orthogonally intersecting monofilament nylon strings (diameter = 0.25 mm), which were 

anchored to the sides of a brass frame of the following dimensions (Figure 3.6a):  12.2 

cm square by 3.0 cm (height).  They were spaced 10 mm apart, and each layer was offset 

by 2.5 mm to prevent the strings closer to the transducer from shadowing the adjacent 

layers. 

The mechanical apparatus was positioned with the tip of the TRUS transducer 

placed below the surface in a bath of distilled water and 7% glycerol (by weight), giving 

a speed of sound of 1540 m/s at a temperature of 20°C.35 The transducer was then rotated 

around its long axis under power of the motor as described earlier to acquire a 3D TRUS 
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image of the string phantom (Figure 3.6b).36  The acquired 3D image was then displayed 

using multi-planar reformatting in a cube view, which can be manipulated and sliced to 

view different sections within the image to identify the different string intersections.36 

The spacing between the strings and their location in the image coordinate system was 

then measured by manually selecting each string intersection.  Each intersection 

measurement was repeated five times to determine the mean and standard deviation. 

To determine the impact that the speed of the motor driving the TRUS probe and 

the ultrasound frame rate has on the image to needle positioning device calibration, the 

motor speed and the number of focal zones selected on the US machine were varied to 

produce nine different 3D images.  The motor speed was varied to produce three different 

scan times:  4, 5.7 and 22 seconds.  Three different focal zones were selected on the US 

machine to vary the frame rate: 8Hz 15Hz, and 30Hz.  For each combination of motor 

speed and frame rate, four non-coplanar string intersections were then manually selected 

in each of the nine images and a rigid body transformation was found between the image 

under investigation and the image with the slowest motor speed and fewest focal zones 

(i.e., scan time = 22s and frame rate = 30Hz) by solving the orthogonal Procrustes 

problem.40  The image rotation about the z axis of the machine coordinate system 

represented the image lag angle, with the assumption that the 22 s / 30 Hz image had no 

image lag.  

A 3D TRUS image of the string phantom was successfully reconstructed without 

any visible discontinuities or probe misalignment artifacts.  Table 3.3 shows the distances 

between the strings within the phantom measured in the three orthogonal views {(x, y), 

(x, z), (y, z)}.  The distance measured in each plane overestimated the known 

manufactured inter-string distance, with measured errors less than 0.40 mm (Table 3.3).  

The transformation between the image and machine coordinate system revealed an image 

lag rotation that varied from 0 to 4.5 degrees about the z-axis of the machine coordinate 

system (Figure 3.6).  This rotation due to image lag is caused by a mismatch between the 

measured transducer rotation angle and the actual angle of the 2D TRUS image digitized 

by the computer.   The image lag is a function of the motor speed and the number of focal 

zones selected on the US machine. 
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Figure 3.6: (a) Photograph of the experimental setup used to align the ultrasound image (b) to the 

coordinate reference frame of the needle positioning device. To determine the relationship between the 

coordinate systems, a multilayered string phantom was constructed and mounted to the needled positioning 

device to constrain the string intersections to a known location. 
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Table 3.3: Measurement results of string separations from the 3D geometric reconstruction experiment 

illustrating the mean distance between the strings, the measurement error (u-u0) where u0=10mm, and 

standard deviation (STD). 

 Y-Z Plane X-Z Plane X-Y Plane 
y z x z x y 

Mean 10.65 10.30 10.38 10.40 10.33 10.62 
u-u0 (mm) 0.65 0.30 0.38 0.40 0.33 0.62 
STD (mm) 0.081 0.025 0.023 0.026 0.016 0.074 

 

3.4 System Validation Methods 

3.4.1 Mock Seed Implantation in Agar Phantoms 

Mock therapy procedures were performed on agar-based tissue-mimicking phantoms to 

quantify the accuracy of the 3D TRUS system for seed placement, needle guidance and 

recording the 3D location of the needle using 3D TRUS for both parallel and oblique 

needle trajectories.  The phantom was constructed by adding agar to a 7% by mass 

glycerol/water solution to produce a speed of sound similar to that of human tissue (1540 

m/s).41  Cellulose (15% by weight) was also added to create acoustic backscattering in 

US to mimic the appearance of tissue.  We used an ultrasound tissue mimicking phantom 

to determine the feasibility of using the needle positioning device manually to align the 

needle to the intended trajectory, and to guide the needle to the correct depth using 3D 

ultrasound.  Since this system was designed to use the same imaging equipment and 

needles currently used in brachytherapy, we do not expect the needle to react any 

differently in tissue than other methods that utilize a manual needle insertion technique.  

Therefore, agar was used in place of animals or ex-vivo tissue to provide a 3D record of 

the experiment as the added variation from the tissue-needle interactions may occlude our 

ability to measure the targeting error resulting from manual control of this system. 

 Stainless steel ball bearings of 1 mm diameter were placed in a geodesic 

configuration centered 60 mm from the surface of the agar block, and 30mm from the 

center of a hole in the agar, which accommodated the TRUS probe.  These ball bearings 

served as fiducials for coordinate registration between the 3D TRUS and micro-CT 
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images.  Since each component (x, y, and z) of target registration error (TRE) is inversely 

proportional to both the spread of the fiducials about each principle axes and the location 

of the fiducial centroid, the choice of using a spherical distribution eliminated any 

orientation biases across phantoms.42  The positional accuracy of the fiducial centroid 

was achieved by constructing the phantom in two parts.  The geodesic fiducial pattern 

was cast separately in a spherical mould, which was then supported in the acrylic box 

(which served as the agar phantom mould) surrounded by agar blocks to hold its position 

in the center of a cube defied by the planned targets. 

   The parallel needle plan involved implanting ten 1 mm diameter beads into the 

phantoms along trajectories that were parallel to the long axis of the TRUS probe.  Five 

of the planned targets were centered in the image forming a line from image left to right 

in the transverse plane at 10 mm increments and 100 mm below the surface of the agar 

phantom.  The other five targets were also centered in the image 4 cm closer to the probe 

axis and at a shallower depth of 60 mm.  This needle configuration was similar to the 

needle placement accuracy experiments used by Wei. et al. (2004)20 and formed a 4x4x4 

cube centered 30 mm from the TRUS probe axis to simulate both shallow and deep 

targets within a prostate.  This experiment was repeated four times to give a total of 20 

beads in the top row with deep penetration and 20 beads in the bottom row with shallow 

penetration.  

 The angled needle plan consisted of implanting nine beads 100 mm behind the 

surface of the agar block through a common point 50 mm from the probe axis.  The 

intersection of the needle trajectories was positioned approximately 10 mm in front of the 

surface of the phantom to space the entry points in 1 mm increments and prevent damage 

to the agar from multiple needle entries through a common point.  The angled needle 

trajectories were positioned both vertically and laterally to the left and right of image 

center at 5º, 10º and 15º and the experiment was repeated four times to give a total of 36 

implanted beads.  

To start the procedure, the tracking apparatus was positioned by inserting the 

TRUS transducer into the agar phantom hole.  Each of the preplanned targets was 
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selected randomly and the user aligned the needle guide to the target needle path using 

the four encoder readouts as a guide.  A near real-time 3D image of the needle path was 

then acquired by the computer using a motorized assembly to continuously rotate the 

TRUS probe back and forth about its long axis in a narrow path to cover the planned 

needle track.  An updated 2D TRUS image was continuously displayed on the computer 

interface in a 2D view that was parallel to the needle track illustrating the current needle 

position and the intended target point within the image (Figure 3.7).  Using a 16 gauge 

brachytherapy needle with a pyramid shaped tip (Nucletron, Veenendaal, The 

Netherlands), an incision was made on the surface of the agar phantom by inserting the 

brachytherapy needle approximately 10-20mm into the phantom.  The needle was then 

retracted and a 1mm diameter ball bearing was fixed to the end of the brachytherapy 

needle sleeve using ultrasound transmission gel (Parker Laboratories, Fairfield, NJ).  The 

bead was then implanted into the phantom using a near real-time 3D TRUS image as a 

guide to a predetermined depth.  When all of the beads were implanted, a 3D TRUS 

image of the phantom was then acquired to provide a record of the procedure. 

The agar phantom was then imaged using an eXplore Locus Ultra Pre-Clinical CT 

scanner (GE Healthcare, London, ON), which is commonly used for small animal 

imaging.43  The high-resolution CT image (isometric voxel dimensions of 0.15 mm3) 

served as the reference standard representing the true location of each needle track and 

bead location.  In the CT image, a needle trajectory was evident as an air track left from 

the insertion of the 16-gauge needle into the agar phantom.   The location of a needle 

track and bead were extracted from a CT image by using a linear regression of selected 

points along the center of the air track, from the base to the tip located at the center of the 

implanted bead.  The centers of the 1mm fiducial markers surrounding the needle paths 

were manually selected from corresponding CT and 3D TRUS images to co-register the 

two coordinate systems. 
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Figure 3.7: Graph showing the image lag (in degrees) as a function of the scan velocity at three different 

US frame rates (8, 16, and 32 Hz). Image lag is defined as the angular misalignment of the image about the 

z-axis of the machine coordinate system. The image lag is proportional to the motor speed and inversely to 

the frame rate. The error bars in the graph represent the standard deviation in the measurements. 

  

3.4.2 Needle targeting error in agar phantoms 

A rigid body transformation was then applied to align both the ultrasound and CT images 

under investigation by solving the orthogonal Procrustes problem.40  Using this combined 

image, the system was evaluated for its ability to (a) guide a needle to a 3D target, and (b) 

record the location of the needle within 3D image following the methods described by 

Cool et al. (2008).44  Refering to Figure 3.8, the mean targeting error MTECT is the mean 

distance between each identified bead location, ai
CT, in the 3D CT image located at the 
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Figure 3.8: Illustration showing the error metrics used to evaluate the user’s ability to guide a needle to a 

3D target, and record the location of the needle within 3D image.  The mean targeting error MTECT is the 

mean distance between each identified bead location, ai
CT, in the 3D CT image and associated target 

location xi
US, which is a virtual point in the ultrasound coordinate frame represented by the open circle. The 

mean target error MTEUS is the mean distance between the each bead location ai
US in the 3D US image and 

the corresponding target location xi
US. The needle guidance error, NGE, is the mean total error associated 

with the system’s ability to guide the needle path to predefined targets.  NGEθ is the angle between the 

needle trajectory identified in the CT image bi
CT and the planned needle path pi

US when projected on to a 

plane perpendicular to the line a-a, which is the shortest distance between the two lines. NLE is defined as 

the minimum distance between the “true” needle axis from CT, bi
CT, and the recorded 3D TRUS needle 

axis, bi
US. NLEθ is the angle between the needle trajectories when projected on a plane perpendicular to 

NLE. 

end of the i th air track bi
CT, and the i th target location xi

US, which is a virtual point in the 

ultrasound coordinate frame.  The mean target error MTEUS is the mean distance between 

MTEUS 

MTECT 
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the each bead location ai
US in the 3D US image located at the end of each air track bi

US 

and the corresponding target location xi
US: 
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where Dp-p( ) is a function that determines the 3D distance between a target point, xi, and 

the corresponding bead location identified in the CT, ai
CT (or US image ai

US), and n is the 

number of times the experiment was performed.   The registration error between the bead 

in US and CT is given by the target registration error (TRE):42 
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The needle guidance error, NGE, is the mean total error associated with the 

system’s ability to guide the needle path to predefined targets.   This error was quantified 

for each needle trajectory as the shortest distance between the i th target location xi
US, and 

the corresponding needle path identified in the 3D CT image bi
CT: 
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where Dp-l( ) is a function that determines the minimum 3D distance between a target 

point ai, and the line corresponding to the air track identified in the CT image, bi
CT.   

NGEθ is the angle between the needle trajectory identified in the CT image bi
CT and the 

planned needle path pi
US when projected on to a plane perpendicular to the shortest line 

between bi
CT and pi

US :  
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where θ(u,v) is the function that defines the minimum angle between the needle 

trajectories. 

The system’s ability to record the needle location in 3D (Needle Localization 

Error, NLE) was quantified using two metrics: NLE, and NLEθ.  NLE is defined as the 

minimum distance between the “true” needle axis from CT, bi
CT, and the recorded 3D 

TRUS needle axis, bi
US.  

n
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where Dl-l( ) measures the minimum distance between two line segments. 

NLEθ is the angle between the needle trajectories when projected on a plane 

perpendicular to NLE:  
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        [7]  

where θ(u,v) is the function that defines the minimum angle between the vectors bi
CT and 

bi
US.  

3.4.3 Results from needle-guidance experiment 

The quantitative results for the bead implant experiment using parallel needle paths to the 

top and bottom rows were similar but the top row values were generally similar as 

summarized in Table 3.4.  Guidance of the bead to each target had a mean error of 

MTECT=1.54±0.49 mm and in CT and MTEUS=1.22±0.36 mm in US.  The mean needle 

guidance error was smaller where NGE=1.11±0.52 mm and NGEθ=0.97±0.49º.  A one-

tailed t-test showed that the mean targeting error was statistically significantly less than 5 

mm (p=0.001, n=39), which is the smallest tumor considered clinically significant.45 The 

needles were accurately localized to 0.58±0.41 mm (NLE) and with a mean angulation 

difference of 1.69±1.38º (NLEθ). 
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Table 3.4: 3D system accuracy for the parallel needle trajectories based on the error analysis described in 

section 3.4.  Mean targeting error, MTECT and MTEUS (Eq. 2 and 1), needle guidance error, NGE (Eq. 4), 

and NGEθ (Eq. 5), all evaluate the seed placement and needle targeting accuracy. The localization metrics, 

NLE and NLEθ (see Eq. 6, and 7) indicate the errors in recording the 3D location of the needle trajectories. 

All of the values are reported as Mean±STD except for the target registration error (TRE) between CT and 

US and is quantified by Eq. 3. 

Needle 

Position 

(mm) 

TRE 

(mm) 

System Accuracy Localization Error 

MTEUS 

(mm) 
MTECT 

(mm) 
NGE 
(mm) 

NGEθ 
(degrees) 

NLE 
(mm) 

NLEθ 
(degrees) 

Top row, 
0.79 1.15±0.37 1.49±0.57  1.05±0.55 0.75±0.36  0.54±0.51 2.64±1.45  Deep (0.72) 

Bottom row, 
1.04 1.28±0.37  1.60±0.40 1.15±0.50 1.17±0.51 0.61±0.26 0.74±0.72  Shallow 

Mean  0.91 1.22±0.36 1.54±0.49# 1.11±0.52 0.97±0.49 0.58±0.41 1.69±1.38  

 

The quantitative results for the bead implant experiment using oblique needle 

paths are summarized in Table 3.5.  All of the beads were successfully implanted with 

exception of the vertical needle path of 15º, where the needle interfered with the TRUS 

probe to a prohibitive extent.  Although it was possible to insert the needle by bending it 

around the TRUS probe, it was apparent that the needle was damaged from excessive 

bending as it would not roll freely on the granite block.  Navigation of the bead to each 

target had a maximum targeting error of MTECT=2.92±0.76 mm in CT and 

MTEUS=2.86±0.72 mm in US at 15º.  Although this error is slightly larger than the results 

for the parallel needle paths, a one-tailed t-test showed the mean targeting error was 

statistically significantly less than 5 mm (p=0.005, n=7), which is the smallest tumor 

considered clinically significant.45  Guidance of the needle to each target had a maximum 

NGE=1.95±0.80 mm and NGEθ=1.4º for all needle trajectories less than 15º.  The angled 

needle paths were accurately localized to a maximum NLE=0.36±0.32 mm and with a 

maximum angulation difference of 1.25±0.90º (NLEθ). 
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Table 3.5: 3D mechatronic system needle guidance results for the oblique needle trajectories at varying 

angles from 5 to 15 degrees. Mean targeting error, MTECT and MTEUS (eq. 2 and 1), needle guidance error, 

NGE (eq. 3), and NGEθ (eq. 4), all determine the seed placement and needle guidance accuracy. The 

localization metrics NLE , and NLEθ (see eq. 5, and 6), indicate the errors in recording the 3D location of 

the needle trajectories. All of the values are reported as Mean±STD except for the target registration error 

(TRE) between CT and US and is quantified by equation 3. 

Needle 

Position 

(TRE) 

TRE 

System Accuracy Localization Error  

MTEUS 
(mm) 

MTECT 
(mm) 

NGE 
(mm) 

NGEθ 
(degrees) 

NLE 
(mm) 

NLEθ 
(degrees) 

V
er

tic
al

 5º  0.70 1.97±0.32 
 

2.22±0.61+ 
  

1.45±0.36 
  

0.82±0.07 
  

0.59±0.15 
  

0.76±0.15 
  

10º 0.91 2.35±0.56 
 

2.49±0.80+ 
 

1.23±0.67 
 

0.82±0.33 
 

0.32±0.30 
  

1.25±0.90 
  

15º 0.64 3.19±0.23 
 

4.02±0.66 
  

3.17±0.28 
  

0.79±0.25 
  

0.36±0.32 
  

0.79±0.24 
  

L
at

er
al

 5º 0.72 1.68±0.68 
 

2.06±0.67# 
  

1.17±0.36 
  

1.10±0.38 
 

0.26±0.16 
  

0.51±0.32 
  

10º 0.69 1.96±0.75 
 

2.10±0.88# 
 

1.20±0.81 
 

1.37±0.40 
 

0.28±0.16 
  

0.86±0.44 
  

15º 0.68 2.86±0.72 
 

2.92±0.76# 
  

1.95±0.80 
  

1.36±0.22 
 

0.30±0.23 
  

0.59±0.44 
  

 

3.5 Discussion and Conclusion 

There are two factors that contribute to the positioning error of the mechatronic device: 

the positioning error contributed from each parallelogram linkage, and the alignment 

error between the needle axis and RCM.  The positioning error of each linkage illustrated 

in Table 3.1 is the result of the accumulation of encoder error and machining tolerances 

within the parallelogram linkages.  This bias can be accounted for by incorporating the 

calibration tables into the forward and inverse kinematics equations by adding a 

correction factor, which was estimated using a linear interpolation between the three 

nearest points within the calibration tables.  On the other hand, the alignment error 

between the needle axis and the machine RCM is the result of the accumulation of 

machining tolerances within the spherical couplings.  Because the calibration procedure 

for the forward and rear parallelogram linkages was performed with the needle guide 

parallel to the z-axis of the machine coordinate system, this error becomes more apparent 

with larger oblique angles as seen in Table 3.2.  Since the forward and inverse kinematics 

equations assume the needle axis is aligned to the forward RCM as a means of solving 
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the equations, this error should be kept to a minimum as a manufacturing constraint to 

reduce its impact on oblique trajectories. 

 The string phantom measurements were within 0.4mm of the known string 

separations measured in the three orthogonal views {(x, y), (x, z), (y, z)}.  This suggests 

that geometrical distortion from transducer misalignment was not significant.  A 

rotational misalignment about the z-axis revealed an image lag, which was caused by the 

misplacement of the 2D images in the 3D reconstructed image due to the assumption that 

the motor speed and US processing time is negligible.  This results in each captured 

image being associated with the current encoder position, which is ahead of the angular 

US image location.  Although this error was accounted for by using the string phantom to 

link the machine and image coordinate system, Figure 3.7 shows that this process would 

need to be repeated if a different motor speed or US frame rate was used.  

 In the mock seed implant experiment, the 3D system was able to guide beads 

along parallel needle paths in vitro to predefined targets with an average error of 1.4 mm 

(MTECT).  This error was primarily due to the relatively large needle guidance error 

(NGE=1.1 mm, NGEθ=1.0º), which was a result of the registration error, the machine 

error, and partially due to the operator error in placing the bead at the correct depth using 

the image as a guide.  

  For the oblique needle trajectories, all of the beads were successfully implanted 

with exception of the vertical angulated needle path of 15º, where it was necessary to 

bend the needle around the TRUS probe resulting in a relatively large bead displacement 

(MTECT=4.0 mm, Table 3.5) and needle guidance error (NGE=3.2 mm).  This imposes a 

limit on the planning of oblique needle trajectories as the thin brachytherapy needles are 

fragile.  Guidance of a bead to the other targets resulted in a mean error that varied from 

MTECT=2.06±0.67 mm for shallow angles (5º, Table 3.5) to MTECT=2.92±0.76 mm at 

15º.  Although these errors are slightly larger than the results for the parallel needle paths, 

a one-tailed t-test showed that the mean targeting error was statistically significantly less 

than 5 mm (p=0.005, Table 3.5), which is the smallest tumor considered clinically 

significant.45 One component contributing to this error is the needle guidance error, NGE, 
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which varied from 1.2 mm at 5 degree angles to 2.0 mm for 15º angles.   These errors 

were additionally influenced by the misalignment of the needle axis with the machine 

RCM, which increases at larger angles.  Although the machine error was a significant 

component of the mean target error (MTECT), placement error, the error in placement of 

the bead along the needle track at an oblique trajectory, was larger (2.2 mm at 15º versus 

1.1 mm for parallel trajectories).  These values were calculated using equation (8), where 

the bead guidance error (BGE) was determined from (MTE) and (NGE): 

22 NGEMTEBGE −=       [8]. 

This error was likely due to the reduced contrast of the needle in the US image at larger 

angles, where the needle was nearly invisible leaving only the shadow artifact created by 

the needle, obscuring layers that were behind it as seen from the transducer line of sight 

(see Figure 3.9).  Since localization of the needle path to each target is independent of the 

machine positional errors, the needle localization error results were smaller than the 

system accuracy results, showing that the 3D image was accurately calibrated to the 

mechatronic device, where NLE<0.6 mm, and NLEθ<1.3º. 

For both parallel and oblique needle trajectories, the mean targeting error 

measured in US (MTEUS) was similar to but slightly smaller than the values measured in 

CT (MTECT).  Since the US image is accurately aligned to the machine coordinate system 

and the geometric distortions are small, as shown in Table 3.3, 3D US can provide an 

accurate estimate of the true 3D needle location. 

Although these errors are statistically significantly less than the smallest tumour 

considered clinically significant,45 this does not guarantee that the deposited radioactive 

source distribution will not be modified to a prohibitive extent or potentially cause harm 

to nearby organs.  The cause of this problem is well known as the thin bevelled tip 

brachytherapy needle will often deflect from the preplanned trajectory through the 

perineum, altering the intended dose pattern and at times requiring multiple needle 

insertions to correct for the problem.39  Since the physician is in direct control of both the 

needle and its trajectory while using our mechatronic system, methods like needle 
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steering39 could be used to aid the physician in guiding the needle to its intended target 

while using the 3D US image as a guide.  To accomplish this, the physician will need to 

interact with the mechanism in an intuitive manner in order to successfully steer the 

needle, which our system can provide by allowing the physician to directly pivot the 

needle about the front RCM (at the patient’s skin) while advancing and rotating the 

needle.  This highlights the importance of using a near real-time imaging system to help 

the physician guide the needle as both the needle and prostate can shift during the 

procedure. 

Another important factor determining the success of a brachytherapy procedure is 

maintaining a uniform distribution of seeds throughout the prostate, without overdosing 

nearby organs such as the bladder, rectum, urethra and seminal vesicles.  Without the use 

of a template, seeds can be spaced further from the urethra to prevent overdosing the 

urethra while maintaining coverage at the anterior parts of the prostate.  Oblique needles 

can help here since the needles can be angled to avoid the pubic arch and gain access to 

the anterior parts of the prostate.  Also, not using a template provides more freedom to 

prevent overdosing the urethra for small prostates where the 5 mm spacing in the fixed 

template is too coarse. 

Current methods used clinically to overcome PAI include either the freehand 

technique or the use of the manipulation ruler, both of which are highly skill dependant.  

Under manual control, this system consists of a passive mechanical linkage for guiding, 

tracking and stabilizing the position of the needle.  The stabilization is accomplished by 

counter-balancing the linkage to maintain the position and orientation of the needle and 

needle guide even when the physician removes his hand from the device.  This permits 

smooth motion of the needle guide with a light touch of the physician's hand providing 

the same feel and control as the freehand technique.  In addition, the current needle 

trajectory is also displayed on the ultrasound image, allowing the physician to coordinate 

the needle position to the image.  This interface should not only decrease the implantation 

time, but also make the procedure less skill dependant as the physician will no longer 

need to visualize and coordinate the needle to the image, thus potentially reducing the 

number of times the needle has to be retracted and reinserted. 
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Figure 3.9: 3D images of an agar phantom used in the mock seed implant experiment illustrating the 

needle at various oblique trajectories from 0º (top left) to 15º (bottom right). 

   

  In conclusion, by combining the 3D TRUS imaging system with a 

dynamically adjustable needle guide, the physician will be able to place the needle 

trajectory to selected targets in the 3D TRUS image with a mean error that closely 

matches the ultrasound resolution.  This would be beneficial as the physician has 
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complete control of the needle and can safely manoeuvre the needle guide around 

obstacles like previously placed needles or a TRUS probe.  Although this system was 

tested using a 3D imaging system, this system is also compatible with any 2D system and 

protocol currently in use.  Our future direction will be to clinically validate our prostate 

therapy system (delivering brachytherapy first, but be able to accommodate other prostate 

therapy approaches like cryotherapy and laser ablation), in which all aspects of the 

procedure will be carried out intra-operatively including dosimetry planning, monitoring 

of prostate changes, dynamic re-planning including oblique trajectories and needle 

placement verification.  
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Chapter 4  

4 Micro-CT Geometric Accuracy Phantom for Use with 
Image-Guided Needle Positioning Systems and Other 
Quantitative Applications 

4.1 Introduction 

Volumetric X-ray micro-computed tomography (micro-CT) is an increasingly important 

tool for research requiring imaging of small specimens or animals.1  The growing 

importance of micro-CT is reflected in the exponential growth of publications since the 

early 1980s on the topic of small animal micro-CT imaging and the availability of a 

variety of micro-CT scanners from at least a dozen manufacturers.2  Although often used 

for qualitative research applications, micro-CT has also developed into a useful tool for a 

wide range of quantitative applications.  Micro-CT has been used for quantitative 

measurements in small-animal imaging applications such bone volume and roughness,3 

tracking of tumour progression and volume,4 and the quantification of whole body 

composition.5  Micro-CT has been demonstrated in the quantitative assessment of 

medical devices such as the characterization of ion chambers6 and measurement of wear 

in replacement joints.7  Quantitative information from micro-CT images has also been 

demonstrated in guiding mechatronic devices to complete preclinical micro-injection 

procedures.8, 9  The success and utility of these applications is dependent on the geometric 

fidelity of images produced by micro-CT scanners. In applications that demand the 

highest geometric fidelity, such as the characterization of ion chambers10 or image-guided 

devices, the ability to characterize the geometric accuracy of micro-CT scanners to a 

traceable standard ensures the highest quality results. 

In-plane geometric inaccuracies of 0.2%11 and 0.3%12 have been previously 

reported for micro-CT scanners.  These percentages represent the error in calibration of 

the micro-CT voxel size.  The reported errors correspond to an error of 20 µm to 30 µm 

per centimeter of distance in an image.  Although these errors are relatively small, they 

can still exert a noticeable negative influence on quantitative results.  For instance, 

mechatronic devices using micro-CT image guidance to complete microinjection 
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procedures may be required to place a needle tip with a positioning error of < 200 µm to 

reach small targets.8  The demanding requirements of these mechatronic devices 

challenge the limits of micro-CT scanners.  The previously reported geometric 

inaccuracies of micro-CT scanners would result in an error of approximately 50 µm, or at 

least one fourth of the allowable positioning error of the device, when applied over a 

typical range of motion of 20 mm.  Geometric inaccuracies in micro-CT images are not 

an error source that can be neglected for demanding applications, and they need to be 

minimized. 

Previous efforts have been made to develop quality assurance phantoms to 

evaluate the geometric accuracy of micro-CT scanners.  Perilli et al. developed a 

phantom consisting of aluminum inserts of known geometry embedded in a cylinder of 

polymethylmethacrylate to evaluate imaging parameters for trabecular bone imaging 

applications.13, 14  The known geometries of the inserts were compared to their geometry 

in the micro-CT images to evaluate the geometric accuracy of the scanner.  However, the 

geometry of the inserts was never qualified to a traceable standard and the phantom did 

not offer a method to correct detected geometric inaccuracies in images.   Du et al. 

developed a quality assurance phantom to assess a number of parameters related to image 

quality, including geometric accuracy.11  The phantom assessed geometric accuracy by 

comparing the known distance of five beads to their positions in micro-CT images.  

However, again, the distances of the bead in the phantom were never qualified to a 

traceable standard. The phantom also only provides a measurement of in-plane geometric 

accuracy and not out-of-plane accuracy.  Finally, the phantom was large and required a 

custom scanner bed that precludes it from use in a wide variety of micro-CT models.   

In this paper, a compact quality assurance phantom qualified to a traceable 

standard is presented for routine evaluation of the geometric accuracy of micro-CT 

scanners.  An automated algorithm is described that processes micro-CT images of the 

phantom to characterize the geometric accuracy of the scanner and calculate correction 

factors to reduce the geometric error of the images.  The phantom and algorithm are used 

to evaluate the geometric accuracy of five micro-CT scanners representing four different 

models of micro-CT systems.  The calculated correction factors are then applied to 
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measurements of fiducial markers in each of the five scanners to evaluate their ability to 

improve fiducial localization.  The techniques developed in this study allow the micro-

CT end user to guarantee the highest level of geometric fidelity and to calibrate images to 

a traceable standard.   

4.2 Methods 

4.2.1 Calibration Phantom Construction 

A calibration phantom was custom built to evaluate the geometric accuracy of micro-CT 

scanners. The physical size of the phantom is approximately 45 mm × 25 mm × 40 mm.  

The small size of the phantom enables it to be easily integrated onto a mechatronic device 

and allows it to fit within a wide range of micro-CT bore sizes.  The calibration phantom 

contains six fiducial markers, which are 6.35 mm (¼") diameter borosilicate spherical 

beads (McMaster-Carr, Cleveland, OH).  The fiducials are fixed in position using a frame 

constructed onto a 6.35 mm diameter carbon fiber shaft backbone (McMaster-Carr, 

Cleveland, OH).   Attached to the carbon fiber backbone are three custom-made Delrin 

plastic clamps.  One end of each of the three clamps attaches to the carbon fiber 

backbone and the other end supports a short length of 6.35 mm diameter carbon fiber 

shaft.  The borosilicate bead fiducials are attached to the short carbon fiber shafts using 

cyanoacrylate glue (Loctite 4541, Henkel Corp., Düsseldorf, Germany).  A micro-CT 

surface rendering of the completed calibration phantom is provided in Figure 4.1.   

Delrin plastic and carbon fiber were selected for frame construction due to their 

high rigidity and low X-ray attenuation.  High rigidity is a key material property since 

high dimensional stability of bead locations is required to evaluate the geometric 

accuracy of micro-CT scanners.  Drift in bead positions would cause erroneous 

overestimates of image geometric error.  For the frame, low X-ray attenuation is also a 

key material property to avoid micro-CT imaging artifacts and to ease segmentation and 

centroiding of the borosilicate beads.  The borosilicate beads were selected as fiducials 

since they possess a precise sphericity of 2.54 µm.  The sphericity of each bead was 

validated to a traceable standard using gauge blocks (Grade B-18, Mitutoyo Canada Inc., 

Toronto, ON, Canada) and an indicator (Model 24165-10, Starrett, Waite Park, MN).  
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The high sphericity of the beads ensures accuracy in phantom construction and in 

centroiding the beads in micro-CT images.   The phantom design was carefully developed 

to ensure the phantom design is compact, possesses high dimensional stability and the 

fiducials can be easily segmented and centroided in micro-CT images. 

 

 

Figure 4.1: Micro-CT surface rendering of the calibration phantom. 

 

4.2.2 Determination of Bead Positions within Calibration Phantom  

The calibration phantom was used to evaluate the geometric accuracy of micro-CT 

scanners by comparing the known positions of beads within the phantom to the position 

of the beads in a micro-CT image.  The dimensional accuracy of the calibration phantom 

is therefore critical to enable detection and correction of geometric errors of < 1 % in the 

voxel dimensions of micro-CT scanners.  Therefore, a method was developed to measure 

the bead positions to a known and traceable standard of measurement. 
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The position of each bead in the phantom was measured using a calibrated XYZ 

positioning stage (M-462-XYZ-SD Series, Newport, Irvine, CA) with an attached 

indicator (Model 24165-10, Starrett, Waite Park, MN) mounted onto a granite surface 

plate (Grade B, Starrett, Waite Park, MN).  The phantom was suspended above the 

granite surface plate by clamping the phantom carbon fiber backbone to a V-block 

(Model 228, Starrett, Wait Park, MN).  Gauge blocks (Grade B-18, Mitutoyo Canada 

Inc., Toronto, ON, Canada) were then stacked onto the granite surface plate.  The 

dimensional accuracy of the gauge blocks is certified to a known and traceable standard 

of measurement.  The height of the stacked gauge blocks was compared to the height of a 

single bead above the granite surface using the XYZ positioning stage and attached 

indicator.  The height of the gauge blocks was iteratively adjusted until the indicator 

indicated no difference between the stack height and bead height.  The indicator 

possessed a measurement resolution of 2.54 µm.  

The distance measurement process was completed for each of the six fiducial 

beads.  The distance of each bead from the granite surface plate was then measured twice 

more in two directions orthogonal to the original measurement direction.  The orthogonal 

distances were measured by rotating the V-block on the granite surface plate and 

repeating the iterative measurement process for each bead.  The orthogonality of the V-

block was measured by the same XYZ stage and attached indicator to be < 2.54 µm over 

2.0 cm of stroke.  The phantom and measurement tools are shown in Figure 4.2.  Using 

this method, the three-dimensional position of each bead in the phantom was measured 

relative to a known and traceable standard of measurement. 
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4.2.3 Scanner Selection and Calibration Phantom Imaging  

The calibration phantom was used to evaluate the geometric accuracy of five volumetric 

X-ray micro-CT scanners commercially available from General Electric Healthcare 

Biosciences (London, ON, Canada).  The models of scanner evaluated included two 

eXplore Ultra Locus scanners and one of each of eXplore speCZT, eXplore CT 120 and 

eXplore RS.  These scanners were selected to represent a range of commercially available 

micro-CT scanning equipment commonly employed in research laboratories, with a range 

of voxel spacing (0.05 mm to 0.15 mm) and transaxial field-of-view (70 mm to 150 mm). 

 A single common calibration phantom was imaged by all five scanners.  The 

calibration phantom was scanned by each scanner five times at the approximate scanner 

isocenter.  Between each scan the phantom was removed from the micro-CT bore and 

repositioned.  For the eXplore Ultra Locus, in addition to five scans at the  isocenter, five 

scans were taken at a position offset from the scanner isocenter by approximately 70 mm,  

 

Figure 4.2: Calibration and validation phantom with measurement equipment. 
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for a total of 10 scans.  The phantom was not scanned at a second position in the three 

remaining scanners since the phantom almost fully occupied these scanners maximum 

trans-axial field of view.  The imaging parameters used for each scanner are summarized 

in Table 4.1. 

 

Table 4.1: Summary of the micro-CT scan parameters used for imaging of the phantoms. 

Scanner 

 

Tube 

Voltage 

(kVp) 

Tube 

Current 

(mA) 

Views 

View 

Exposure 

Time (ms) 

Total Scan 

Time 

Nominal Voxel 

Size (µm) 

eXplore Locus 

Ultra  
140 20 1000 16 16 seconds 153.9 

eXplore 

SpecZT 
110 32 900 16 5 minutes 49.8 

eXplore CT 

120 
110 32 900 16 5 minutes 49.7 

eXplore RS 80 45 900 400 120 minutes 45.4 

 

4.2.4 Geometric Correction Calculation 

An automated algorithm was developed using MATLAB (The Mathworks, Inc., Natick, 

MA) to compare the known position of beads in the phantom to their positions in the 

micro-CT images.  The algorithm determines the position of the phantom’s borosilicate 

beads in the images by using a multi-step bead localization technique.   Beads were first 

segmented using a threshold-based region growing algorithm.  The threshold level was 

calculated using an iterative algorithm developed in MATLAB to determine the threshold 

that yielded an average segmented volume of the beads to within 0.1% of their known 

volume.  The center of the segmented bead was then calculated using a squared-intensity-

weighted centroiding algorithm.  The algorithm used to calculate the bead centroids has 

an accuracy of < 5% of the nominal image voxel size in localizing 3D centroid positions 
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in simulated images.15  Since distance is measured between two bead centroids, the error 

in distance arising from this centroiding error is doubled. 

Within the image set of each scanner, the distance of each bead to all other beads 

in the phantom was measured for a total of 15 distances.  The distance in the images from 

each bead to all other beads was scaled to the known bead distances using the equation: 

222 )/()/()/( zimgyimgximgKnown CFZCFYCFXDist ++=     [1] 

where Ximg , Yimg , and Zimg are the components of the bead distance in the images along 

the respective axes of the scanner and CFx, CFy, and CFz are the correction factors 

required along the respective axes of the scanner to transform the bead distances in the 

images to the known bead distances.   Equation 1 for each of the 15 bead distances was 

combined to form the system of equations: 
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The least-squares solution of Eq. 2 was determined to calculate values for each of the 

correction factors. 

4.2.5 Validation Phantom Construction 

A second phantom was constructed to validate the correction factors measured by the 

calibration phantom.  The validation phantom is an independent verification that the 

calculated correction factors are not unique to the calibration phantom and generally 

correct images produced by the micro-CT scanner.   The validation phantom, like the 

calibration phantom, contains six 6.35 mm (¼") diameter borosilicate spherical beads 

acting as fiducial markers (McMaster-Carr, Cleveland, OH).  The beads were again 

secured to a 6.35 mm diameter carbon fiber shaft backbone using Delrin clamps.  The 

positions of the beads in the validation phantom differed from the bead positions in the 

calibration phantom.  Different bead positions were obtained by changing the angle of the 

Delrin clamps and by adjusting the length of carbon fiber shafts used to mount the beads 
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to a length of 25.4 mm.  Once the validation phantom was constructed, the bead positions 

within the phantom were measured using the method previously described for the 

calibration phantom. A micro-CT surface rending of the validation phantom is shown in 

Figure 4.3.  

 A rigid-body registration was applied between the measured bead positions of the 

calibration and validation phantom.  The registration was applied to ensure that the bead 

positions in the validation phantom were truly independent of the calibration phantom.   

A poor rigid-body registration, as demonstrated by a large fiducial registration error 

(FRE),16 would indicate that the validation phantom bead arrangement was different from 

the calibration phantom arrangement.  An FRE of greater than 6.35 mm (or 

approximately one bead diameter) was assumed to indicate a sufficiently different bead 

arrangement. 

 

Figure 4.3: Micro-CT surface rendering of the validation phantom. 
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 The validation phantom was imaged once at the isocenter of each scanner.  Again 

for the eXplore Ultra Locus, the phantom was imaged at an additional position offset 

from the isocenter.  For each scanner, the same scan parameters summarized in Table 4.1 

were used for the validation phantom.  The validation phantom beads were segmented 

and centroided using the algorithm previously described for the calibration phantom.  The 

distances between each bead pair in the validation phantom was calculated with and 

without applying the correction factors calculated for each scanner using the calibration 

phantom. 

4.2.6 Data Analysis 

The sets of calculated correction factors for each scanner were statistically compared 

using ANOVA and Tukey tests with p < 0.05 to determine if any statistically significant 

differences exist for the correction factors along the x, y and z axes of each scanner.  This 

comparison was performed to determine if the geometric error of the scanners was 

isotropic or anisotropic in nature.  If the correction factors are not significantly different 

(i.e. indicating an isotropic error), a single averaged correction factor could be used for 

each axis.  For the two eXplore Locus Ultra scanners, pairs of correction factors from the 

isocenter and offset position for each axis were compared using a two-tailed paired t-test 

with p < 0.05 to determine if any significant difference exists for each respective 

correction factor at the two positions.  If correction factors from the two positions are 

significantly different, it may indicate that the values of the correction factors are 

dependent on position within the scanner bore. 

The correction factors were also statistically evaluated for their effectiveness in 

improving the geometric accuracy of micro-CT scanners.  The distances between beads 

within the calibration phantom and the validation phantom were calculated with and 

without using the correction factors.  The error for each of these distances was compared 

using a two-tailed paired t-test with p < 0.05 to determine if the correction factors 

reduced the error by a statistically significant amount.  The distance errors were also 

qualitatively compared to determine if the differences in error were practically 

meaningful.  Failure to identify a statistically significant and practically meaningful 
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improvement in bead distance errors would indicate that use of the correction factors to 

improve scanner geometric accuracy is not a useful exercise. 

4.3 Results 

4.3.1 Correction Factor Values 

The average calculated correction factor of each axis for each scanner is summarized in 

Table 4.2.  In addition, an average volumetric correction factor is provided to characterize 

the correction in voxel volume for each scanner arising from the linear axis correction 

factors.  A correction factor > 1 indicates that distances in the uncorrected micro-CT 

images overestimated the true dimensions.  Generally, geometric errors in-plane along 

the X and Y axes are larger than out-of-plane errors in the Z direction.  In-plane distances 

tend to be overestimated while out-of-plane distances are underestimated.  A statistically 

significant difference was found between the correction factors in the X (p = 0.043 and p 

< 0.001), Y (p < 0.001 for both scanners) and Z (p < 0.001 for both scanners) axes for the  

 

Table 4.2: Calculated average scanner correction factors of each axis. 

Scanner 

 

X-Axis 

Correction Factor 

Y-Axis 

Correction Factor 

Z-Axis 

Correction Factor 

Volumetric 
Correction Factor 

eXplore Locus 
Ultra Isocenter 
Scanner One 

0.9998 ± 0.00006 1.0009 ± 0.00012 1.0002 ± 0.00021 1.0008 ± 0.00034 

eXplore Locus 
Ultra Offset 
Scanner One 

1.0008 ± 0.00063 0.9968 ± 0.00018 0.9987 ± 0.00040 0.9962 ± 0.00063 

eXplore Locus 
Ultra Isocenter 
Scanner Two 

1.0033 ± 0.00013 0.9981 ± 0.00012 0.9978 ± 0.00014 1.0020 ± 0.00012 

eXplore Locus 
Ultra Offset 
Scanner Two 

1.0022 ± 0.00010 0.9999 ± 0.00009 0.9998 ± 0.00008 0.9993 ± 0.00012 

eXplore SpecZT 1.0011 ± 0.00007 1.0008 ± 0.00002 0.9990 ± 0.00004 1.0009 ± 0.00043 

eXplore CT 120 1.0027 ± 0.00006 1.0031 ± 0.00103 1.0005 ± 0.00014 1.0064 ± 0.00133 

eXplore RS 0.9963 ± 0.00021 0.9965 ± 0.00069 0.9957 ± 0.00025 0.9886 ± 0.00092 
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two different bore positions of the two eXplore Locus Ultra sccanners.  These results 

suggest that the value of the correction factors varies within the micro-CT bore.  The 

calibration phantom should ideally be placed as close as possible in the bore to the 

anticipated location of targets. 

The results of Tukey tests comparing the correction factors for each scanner are 

summarized in Table 4.3.  Generally, no significant difference was found between the X 

and Y correction factors for the scanners, indicating a single average correction factor can 

be used for the in-plane direction.  The X and Y correction factors were only found to be 

significantly different for the two eXplore Locus Ultra scanners.  However, for these two 

scanners the absolute difference between the X and Y factors were quite small, with < 1% 

difference.   In general, the X and Y correction factors were generally significantly 

different from the Z correction factors.  This result suggests the out-of-plane correction 

factor is unique from the in-plane correction factors. 

Table 4.3: Results of Tukey test ( p <0.05) to determine if correction factors for each scanner are 

significantly different for each axis. 

Scanner 

 

X & Y X & Z Y & Z 

eXplore Locus Ultra Isocenter Scanner One Yes No Yes 

eXplore Locus Ultra Offset Scanner One Yes Yes No 

eXplore Locus Ultra Isocenter Scanner Two Yes Yes Yes 

eXplore Locus Ultra Offset  Scanner Two Yes Yes Yes 

eXplore SpecZT No Yes Yes 

eXplore CT 120 No Yes Yes 

eXplore RS No No Yes 
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4.3.2 Geometric Correction to Calibration Phantom 

The average error in bead distance within the calibration phantom for all sets of images 

was calculated with and without application of the calculated correction factors.  The 

corrected and uncorrected bead distances are summarized in Table 4.4.   Application of 

the correction factors reduced the error in bead positions for the calibration phantom in 

four out of five image sets.  In nearly all cases the corrected and uncorrected error were 

found to be significantly different.  The p-values for each scanner are also summarized in 

Table 4.4.  The mean difference in corrected and uncorrected errors ranged from 

negligible to 83 µm in absolute terms or 0 to 0.338 in percent terms.  

 

Table: 4.4: Summary of the mean error in the measured bead distances of the calibration phantom for each 

scanner. The uncorrected errors and the corrected errors calculated using the appropriate scaling factors is 

provided.  Each error is described with both a mean absolute value in µm and as a percent of the total bead 

distance.  Finally, the p-value of the t-test between the corrected and uncorrected error of each scanner is 

provided. 

Scanner Uncorrected  
Error (µm) 

Corrected  
Error (µm) 

Uncorrected  
Error (%) 

Corrected Error 
(%) p-Value  

eXplore Locus Ultra 
Isocenter Scanner One 22 ± 2 22 ± 3 0.096 ± 0.013 0.101 ± 0.016 p = 0.03 

eXplore Locus Ultra 
Offset Scanner One 38 ± 3 31 ± 4 0.172 ± 0.014 0.148 ± 0.014 p = 0.002 

eXplore Locus Ultra 
Isocentre Scanner Two 19 ± 1 7 ± 1 0.078± 0.006 0.031± 0.007 p < 0.001 

eXplore Locus Ultra 
Offset  Scanner Two 

36 ± 1 35 ± 1 0.146± 0.003 0.150± 0.003 p = 0.16 

eXplore SpecZT 18 ± 4 11 ± 3 0.080 ± 0.016 0.054 ± 0.014 p < 0.001 

Explore CT 120 50 ± 7 7 ± 1 0.200 ± 0.027 0.007 ± 0.001 p = 0.001 

eXplore RS 92 ± 6 9 ± 2 0.380 ± 0.027 0.042 ± 0.011 p < 0.001 
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4.3.3 Bead Arrangement of Calibration Phantom and Validation 
Phantom 

The average distance between beads within the calibration phantom was measured to be 

24.14 ± 7.51 mm. Within the validation phantom, the average bead distance was 39.41 ± 

12.99 mm.  The smallest FRE of the rigid body registration of the measured calibration 

bead locations to the validation phantom locations was 18.4 ± 6.3 mm, or approximately 

three fiducial bead diameters. A large FRE indicates that the bead pattern in the 

validation phantom is unique from the bead pattern within the calibration phantom.  

 

4.3.4 Geometric Correction to Validation Phantom 

The average error in bead distance within the validation phantom for all sets of images 

was calculated with and without application of the calculated correction factors from the 

calibration phantom.  The corrected and uncorrected bead distances are summarized in 

Table 4.5.  The p-values for the two-tailed t-tests between the corrected and uncorrected 

errors are also summarized in table 4.5.  In three scanners with minimal geometric 

accuracy errors, application of the correction factors slightly increased the geometric 

errors of the images.  However, this increase was not statistically significantly except for 

the offset position of the second eXplore Locus Ultra scanner.  For the two remaining 

scanners, application of the correction factors significantly improved the geometric 

accuracy of the scanner.  
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Table 4.5: Summary of the mean error in the measured bead distances of the validation phantom for each 

scanner. The uncorrected errors and the corrected errors calculated using the appropriate scaling factors 

from the calibration phantom are provided. Each error is described with both a mean absolute value in µm 

and as a percent of the total bead distance.  Finally, the p-value of the t-test between the corrected and 

uncorrected error of each scanner is provided. 

Scanner Uncorrected  
Error (µm) 

Corrected  
Error (µm) 

Uncorrected  
Error (%) 

Corrected Error 
(%) p-Value 

eXplore Locus Ultra 
Isocenter Scanner One 

37 ± 27 38 ± 26 0.100 ± 0.080 0.101 ± 0.074 p=0.46 

eXplore Locus Ultra 
Offset Scanner One 44 ± 36 54 ± 41 0.132 ±0.138 0.163 ±0.158 p=0.26 

eXplore Locus Ultra 
Isocentre Scanner Two 27 ± 15 29 ± 15 0.077 ± 0.068 0.084 ± 0.056 p=0.69 

eXplore Locus Ultra 
Offset  Scanner Two 

44 ± 22 80 ± 54 0.132 ± 0.117 0.215 ± 0.145 p= 0.01 

eXplore SpecZT 15 ± 10 19 ± 13 0.047 ±0.041 0.049 ±0.033 p=0.35 

eXplore CT 120 67 ± 27 22 ± 16 0.168 ± 0.037 0.052 ± 0.025 p<0.001 

eXplore RS 148 ± 61 27 ± 19 0.370 ± 0.086 0.074 ± 0.054 p<0.001 

 

4.3.5 Comparison of Validation Phantom Errors 

The eXplore CT 120, eXplore speCZT and eXplore RS all yielded images with a voxel 

size of approximately 50 µm.  The corrected and uncorrected errors of these three 

scanners were compared using ANOVA and Tukey tests with p < 0.05 to see if errors 

were consistent across three scanners with images of the same voxel size.  The 

uncorrected errors of all three scanners were found to be statistically different.  However, 

the corrected errors of all three errors were not found to be statistically different.  This 

indicates scanners of the same voxel size tend to have unique geometric inaccuracies but 
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will possess similar non-unique accuracies when corrected by the phantom.   The 

corrected and uncorrected errors of the two positions of the two eXplore Locus Ultra 

scanners were also compared using a two-tailed paired t-test.  The uncorrected errors of 

the isocenter (p = 0.29) and offset (p = 0.94) positions were not significantly different.  

Similarly, the corrected isocenter (p = 0.23) and offset (p = 0.21) positions were also not 

significantly different. 

4.4 Discussion 

We have demonstrated the use of a specialized calibration phantom to measure and 

correct the geometric accuracy of five different micro-CT scanners spanning four model 

types.  The calibration phantom can be used to calculate traceable correction factors that 

improve the localization of fiducials in micro-CT images whose positions are 

independent of the initial calibration phantom.   

In two of the five scanners tested, calculation and application of the correction 

factors were found to significantly improve fiducial localization independent of the 

calibration phantom.  For these two scanners, the mean geometric error of the images was 

reduced from 0.20% and 0.38% to 0.01% and 0.04% respectively.   For the three 

remaining scanners, application of the correction factors slightly increased geometric 

error of the validation phantom; however, the increase was not statistically significant.  

Although small in absolute terms, the calibration phantom can provide a significant and 

meaningful improvement for completing image-guided micro-injection procedures.  For 

the worst-case scanner, the mean error in fiducial localization for the validation phantom 

was reduced from 0.370% of the bead distance to 0.074% of bead distance.  Over a 20 

mm travel of a typical small-animal mechatronic device, this represents a reduction of 

error from 74 µm to 15 µm.  An improvement of 59 µm provides a considerable benefit 

towards achieving a desirable position error > 200 µm for a mechatronic device.  In 

addition, the linear correction factors of each scanner axis will multiply to result in a 

larger volumetric correction factor.  The volumetric correction factor characterizes the 

change in voxel volume resulting from the calculated correction factors.  The greatest 

volumetric correction occurred for the eXplore RS and was approximately 1.14%. This 

value indicates the un-calibrated scanner would be expected to underestimate the volume 
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of an object by 1.14 % based on the correction factor values.  These results suggest 

measurement, and if need be, correction of the geometric inaccuracies in micro-CT 

images is required for image-guided interventions or any other application that demands 

high geometric fidelity of images.  

The small size of the calibration phantom allows it to fit within the bore of a wide 

range of micro-CT scanner designs and to be easily incorporated into the designs of 

mechatronic devices.  The use of an automated algorithm allows the correction factors to 

be calculated quickly.  The most significant interruption to the work flow of mechatronic 

micro-injection procedures would be the time required to scan and reconstruct images of 

the calibration phantom.  However, micro-CT mechatronic devices typically require a 

scan at the start of interventions to register the device with the micro-CT scanner.  

Measurement and correction of scanner geometric inaccuracies could be incorporated 

into the registration process of mechatronic devices.  Either the scanner is well calibrated 

and the correction factors provide no significant improvement at the cost of a minimal 

time increase for registration or best case, application of the correction factors provides a 

meaningful improvement to target localization and targeting accuracy.  In either case, the 

end user is assured that localization errors resulting from geometric errors have been 

minimized and will not affect the success of their interventions.  The application of 

correction factors can provide a major improvement in targeting accuracy with minimal 

additional cost in time or resources and should be incorporated into the design of any 

micro-CT guided mechatronic device.         

Statistical analysis of the correction factors suggests the geometric inaccuracy of 

micro-CT scanners is slightly anisotropic in nature.  Although the anisotropy was 

statistically significant, it was extremely small.  The largest percent difference between 

the mean scaling factors of an axis of a scanner was approximately 0.5% for the isocenter 

of the second eXplore Locus Ultra scanner.   The X and Y correction factors were 

generally not significantly different from each other but were generally significantly 

different from the Z correction factor.  These results are not surprising.  In the scanners 

tested, the same X-ray detector pixel spacing is used for measurement of the in-plane 

direction along the x and y axes but not along the z axis.  These results suggest a single 
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averaged value of the X and Y correction factors can be used along these axes.  When 

exceptions existed for this trend, the absolute difference between these two correction 

factors remained quite small (< 0.5 %), suggesting an average correction factor can still 

be used.  Between the isocenter and offset positions of the two eXplore Locus Ultra 

scanners a significant difference in correction factors was found along all three axes.  

These results suggest the geometric accuracy of micro-CT scanners may vary with 

location in the bore.  The calibration phantom should therefore be placed as close to 

targets as possible.         

 Interesting inferences can be made from the calculated corrected and uncorrected 

errors across the micro-CT scanners.  The eXplore CT 120, eXplore speCZT and eXplore 

RS all yielded images with an isotropic voxel size of approximately 50 µm.  The eXplore 

speCZT had a small geometric error indicating it was already well-calibrated for 

geometric accuracy, whereas the eXplore CT 120 and eXplore RS possessed correctable 

initial geometric errors. A Tukey test found these three scanners to have statistically 

significant difference in uncorrected errors.  However, the corrected errors of these three 

scanners were not significantly different and are all approximately the same.  These 

results suggest use of the calibration phantom can correct the geometric accuracy of 

poorly calibrated micro-CT scanners to correspond with the accuracy of an already well 

calibrated scanner of equivalent voxel size.  Similarly, both eXplore Locus Ultra scanners 

were well-calibrated and possessed a similar small geometric error.  Between these two 

scanners, no significant difference was found between the uncorrected and corrected 

errors.  The eXplore Locus Ultra results again suggest scanners of the same voxel size 

will possess similar geometric errors when calibrated. 

 For comparison of results, previous studies to quantify the geometric accuracy of 

micro-CT scanners have been limited.  Furthermore, none of these previous studies 

offered methods to correct geometric inaccuracies.  However, previous studies have 

measured the in-plane geometric error of both the eXplore Locus Ultra and eXplore CT 

120.  Du et al. reported a 0.2% error for the eXplore Locus Ultra.   This is comparable to 

the mean errors of 0.10 ± 0.01 % and 0.08 ± 0.01 % detected by our calibration phantom 

at the isocenter and 0.17 ± 0.01 % and 0.15 ± 0.01 % detected offset from the isocenter.  
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Bahri et al. reported a 0.3% error for the eXplore CT 120, which is comparable to the 

averaged error of 0.20 ± 0.03 % detected using our calibration phantom.  Our phantom 

found both the eXplore Locus Ultra and eXplore CT 120 to undersize voxels when 

compared to the manufacture’s specifications, which is consistent with the findings of 

both Du et al. and Bahri et al.. The results reported in this paper appear in line with these 

previous results. 

4.5 Conclusion 

We have developed a traceable calibration phantom and a technique to evaluate the 

geometric accuracy of micro-CT scanners. The geometric errors detected by this new 

phantom are in-line with previous errors reported using non-traceable phantom designs. 

In two of the five scanners evaluated using the new phantom design, statistically 

significant correction factors were derived to correct the scanner geometric accuracy. 

However, for many applications, the impact of these correction factors would be small. 

These results suggest that non-traceable phantom designs are sufficient for the geometric 

calibration of micro-CT scanners for the majority of applications. Use of a traceable 

calibration phantom may be useful for applications demanding the highest geometric 

fidelity of images, such as small animal image-guided interventions or the 

characterization of medical devices. The calibration phantom is an easily implemented 

assurance to micro-CT end users that the geometric fidelity of their images has been 

calibrated against a traceable standard of measurement.    
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Chapter 5  

5 3D Image-Guided Robotic Needle Positioning System 
for Small Animal Interventions 

5.1 Introduction 

Clinical medical robotics is a mature field and dozens of clinical robotic systems have 

been developed for use in a wide range of interventional applications.1  Today, use of 

medical robotics is increasingly becoming part of routine procedures for example, the da 

Vinci robot by Intuitive Surgical for radical prostatectomy.2  This growing use and 

importance of medical robotic systems is a stark contrast to the state of robotics for use 

with small animals in preclinical research.  A particular preclinical application, that could 

greatly benefit from the use of robotics is the development of an image-guided robotic 

system for needle interventions.  Although a number of systems have been developed for 

image-guided clinical needle interventions3 no such systems are in use for routine 

preclinical use.  Rather, sub-optimal non-robotic and non-image-guided techniques 

remain the norm for small animal needle interventions.  Techniques typically used for 

small animal needle interventions require surgical exposure of targets,4-7 percutaneous 

injections through the skin4, 8 or stereotactic devices.9  Exposure of the subjects to surgery 

suffers from associated surgical mortality and morbidity, which may confound research 

results.  Both percutaneous and surgical techniques are ultimately highly dependent on 

the ability of a human operator to correctly place a needle, and they suffer from problems 

of accuracy and repeatability.  Stereotactic devices are limited to interventions within the 

skull and are limited by the accuracy of anatomic atlases and localization of external 

landmarks. In comparison, the current methods typically used for small animal needle 

interventions are relatively unsophisticated in comparison to clinical methods. 

Imaging technology has outperformed robotics in the development of specialized 

small-animal systems for preclinical research.  Analogous small-animal imaging systems 

have been developed for all the major clinical imaging modalities including computed 

tomography (CT), magnetic resonance (MR), positron emission tomography (PET), 

single-photon emission computed tomography (SPECT) and ultrasound.  These small-
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animal imaging systems have achieved popular use and are considered to have greatly 

contributed to preclinical research.10  CT imaging developed for use with small-animals, 

commonly referred to as micro-CT, is a particular imaging modality of interest.  Micro-CT 

scanners are available from at least a dozen manufacturers11 with typical voxel sizes ranging 

from 5 µm to 450 µm and trans-axial fields of view ranging from 1 to 20 cm.12, 13 

To ameliorate small animal needle interventions, a number of previous efforts have 

been made to integrate robotic devices with micro-CT imaging systems to perform image-

guided needle interventions.14-17  In addition, several devices not explicitly intended for 

imaging-guidance have also been developed for small needle interventions and could be 

potentially integrated with micro-CT imaging.18, 19  The development of these systems 

combines the accurate and non-invasive target localization of imaging with the positioning 

accuracy and repeatability of robotic systems. The design requirements these devices must 

satisfy are demanding.  A needle positioning error of < 200 µm may be required to 

successfully complete small animal needle interventions.17   Furthermore, the design of these 

devices must be extremely compact to allow them to be fully integrated into the small bores 

of micro-CT imaging systems.   

Five previous efforts for potential small animal micro-CT robotic needle intervention 

systems have been identified.  Unfortunately, none of these systems are ideal.  The system 

developed by Waspe et al.17 is the most sophisticated and best characterized of these devices.   

The system was successfully integrated with a micro-CT scanner and achieved a mean 

targeting error of 154 ± 113 µm in a tissue mimicking phantom.  The system was also able to 

successfully inject tungsten beads into a rat brain.  However, the system was too large to fit 

within a micro-CT bore and required transport of the animal to the robot workspace 

following imaging.   The system also suffered from variations in targeting accuracy as 

evidenced by the large standard deviation in targeting error.  The four remaining systems also 

suffer from a number of drawbacks.  The three systems developed by Kanzides et al.,14 

Hwang et al .18 and Ramrath et al.19 all lack a technique to register the robotic devices with a 

micro-CT imaging system.  The accuracy of these three systems was only evaluated in air 

rather than in tissue mimicking phantoms.  Ramrath et al. achieved an impressive mean 

positioning accuracy of 32 µm; however, the robot is based on a stereotactic device and is 

limited to interventions in the skull.  Kanzides et al. and Hwang et al. achieved poorer mean 
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targeting accuracies of 0.4 mm and 2 mm respectively.  The fourth system, developed by 

Nicolau et al.15, did not have its overall targeting accuracy characterized, but the authors 

demonstrated its ability to localize the needle tip to within 0.7mm.  None of the 

aforementioned authors evaluated the ability of their robot to operate within a micro-CT bore.   

This paper presents the design of a micro-CT guided small-animal robotic needle-

positioning system and demonstrates its ability to perform needle interventions within the 

bore of the scanner with a targeting accuracy of < 200 µm.   The robotic system implements a 

spherical linkage design, based on the miniaturization of previous clinical systems used for 

prostate20 and breast biopsy21.  The spherical linkages of the robot are designed to create a 

remote center of motion (RCM).22  In order to simplify the robotic design and maintain a 

small targeting error, a novel implementation of the RCM is used in the system. The 

positioning error of the robotic system is quantified using targeting experiments in tissue-

mimicking phantoms.  In vivo experiments were performed to test the robotic system’s ability 

to direct a needle to a specified target in a xenograft mouse model and to assist with tumour 

interstitial fluid pressure (IFP) under image guidance. 

5.2 Methods 

5.2.1 Mechatronic System Design 

5.2.1.1 Kinematic Frame Design 

High rigidity is the critical factor in the success of a kinematic frame design used for high 

targeting accuracy.  The rigidity of the kinematic frame can be most easily improved by 

miniaturizing the size of the mechanism.  Decreasing the size of the frame by half would 

increase its rigidity by eight times. In addition, a smaller frame will also allow the robotic 

system to operate within a micro-CT bore and complete interventions without the need to 

relocate the animal.  Not requiring relocation of the animal during interventions reduces 

opportunities for target motion and improves targeting accuracy.  The kinematic frame 

design must therefore be as compact as possible. 

The use of a robot architecture based on a fixed remote center of motion (RCM) is 

best suited for completing a specific task in a confined workspace.1  The RCM 

architecture, is well established within clinical robotic systems.22  In an RCM-based robot 
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architecture all of the rotational axes of the robot intersect at a common point in 3D 

space.  This architecture allows for higher angular mobility in a confined space such as a 

scanner bore.  An RCM design also has the added advantage of allowing needle 

translation and orientation to be decoupled when positioning the needle for interventions.  

The decoupling of translation and orientation no longer makes it necessary to 

simultaneously control multiple degrees of freedom during the most delicate part of 

procedures: needle insertion. 

A comparative analysis was performed to determine the RCM architecture best suited for 

the kinematic frame.  The designs considered were the double parallelogram linkage,17 

the goniometric arc19 and the spherical linkage18, 20. The double-parallelogram design was 

found to be unsuitable for this application because of its size and number of components 

required. The goniometric arc is a simpler design than the double-parallelogram. 

However, it is difficult to manufacture a linear bearing from CT-compatible materials to 

support the tool in a goniometric arc design.  The ferrous materials typically used in most 

linear bearings will generate streak artifacts because of high attenuation and non-ferric 

CT-compatible materials typically lack rigidity, which results in bearing deflection and 

friction. The spherical linkage was found to be better than the other two options due to its 

simplicity of design.  The spherical linkage design also allows for ease in adjustability 

and calibration to create a precise RCM independent of the manufacturing tolerances in 

each part of the linkage. The RCM adjustment is accomplished by splitting the base link 

(Figure 5.1) into two parts to control the orientation of each hinged connection in the 

linkage.  The orientation of the hinged connections can then be calibrated to intersect at 

the RCM.  A spherical linkage was selected for the kinematic frame of the system due to 

its simplicity and ability to achieve a precise RCM. 
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Figure 5.1: A schematic representation of the proposed RCM linkage design, which consists of two parts: a 
forward (labeled L1 through L5) and a rear spherical linkage (labeled l1-l4). The forward spherical linkage 
consists of five links (L1-L5) supporting the needle driver and five hinged connections (R1-R5) pinned to the 
base (L0).  The rear linkage is a mirror image of the forward linkage and consists of four linkage elements 
(l1-l5) and four hinged connections (r1-r4).  The extra pinned connection (R5) in the forward assembly is 
used to adjust the axis of each pinned connection (R3 and R4) in the base link (L1 and L5) to create a precise 
RCM.  The linkage functions as a pantograph to constrain the rear linkage to counterbalance the forward 
linkage and payload using the brass weights attached to the rear spherical linkage.  The two encoders are 
mounted to the base (L0), and record the angle of each rotational axis.  The needle is mounted to the link L3 
and its axis is aligned along the rotational axis R5.  The spherical linkages can be manipulated using either 
motors or through manual manipulation of a handle mounted to the rear spherical linkage.  The axis of each 
hinged connection in the spherical linkages converges to a common point in space to form a remote center 
of motion: (RCM) at the forward spherical linkage and (rcm) at the rear linkage  
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5.2.1.2 Mechatronic System Description 

The mechatronic system contains a total of six degrees of freedom.  Two degrees of 

freedom are contained within the systems spherical linkages, which form two rotational 

axes: roll and pitch.  The rotational axes control needle orientation during interventions.  

Three degrees of freedom are contained in a custom-built 3-axis xyz linear stage, which 

supports the spherical linkage (Figure 5.2).  The linear stage controls needle translation 

during interventions.  The stage provides 3 cm of stroke along the x and y axes and 1.5 

cm along the z axis, with an accuracy 2.54 µm in each axis.  The position of the stage 

along each axis is tracked using three optical encoders.  Finally, the system consists of a 

one degree of freedom linear needle driver.  The needle driver is used to insert and retract 

the needle during interventions.  Both the mouse bed and robotic system are secured 

directly to the couch of the micro-CT scanner (Figure 5.2). The entire system is compact 

enough to operate entirely within the micro-CT bore.   

The spherical linkage assembly consists of two parts: a forward and a rear linkage 

(Figure 5.1). The forward and rear linkages are coupled together through an elongated 

shaft assembly.  The shaft assembly and associated linkage functions as a pantograph to 

allow the rear linkage to counterbalance the forward linkage and payload.  The forward 

spherical linkage contains an encoder (RM22SC001 2B30F1C00, Renishaw, 

Gloucestershire, U.K.) for each of the two rotational axes.  The two encoders are 

mounted to the base of the spherical linkage and record the angle of each rotational axis. 

The encoders allow for real-time monitoring and display of each rotational axes’ angle. 

The spherical linkages can be manipulated using either motors or manual manipulation of 

a joystick mounted to the rear spherical linkage.  The axis of each hinged connection in 

the spherical linkage converges to a common point in space to form an RCM.  The angle 

between each hinged connection in the spherical linkage defines the size and shape of the 

operating envelope of the kinematics frame. The base link (Figure 5.1, L1) defines the 

reference axis of the rotational coordinate system, which is fixed at the RCM.  The 

encoders mounted on the robot base are used to measure the relative angles between the 

two successive linkages (Figure 5.1, links: L1 and L2) and between the links L1 and base 

respectively. 
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Figure 5.2: (Top) Photograph of the robotic apparatus mounted on the CT scanner animal couch and 
control system.  The mechatronic apparatus consists of an XYZ linear stage that supports the spherical 
linkage. (Bottom) Photograph of the forward spherical linkage and attached needle driver. The needle 
driver is mounted such that the axis of the needle intersects the RCM of the spherical linkage.  The mouse 
bed is attached to a double ball joint, which in turn is clamped to the animal couch via a pair of hollow 
aluminum rails giving a total of six degrees of freedom. The fiducials mounted to the aluminum shaft 
below the mouse bed are used to register the robot to the CT scanner. This registration will account and 
correct for the variability introduced when the robot is reattached to the micro-CT. 

The forward spherical linkage consists of six links and five hinged connections 

supporting the needle driver. The rear linkage is a mirror image of the forward linkage 

and consists of five linkage elements and four hinged connections. The extra pinned 
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connection in the forward assembly is used to adjust the axis of each pinned connection 

in the base link to create a precise RCM.  Figure 5.1 shows a schematic representation of 

the RCM linkage design. 

To determine the stability of the RCM, a precision tooling ball (6.35mm diameter, 

part 29011, Jergens Inc., Cleveland, OH) was attached to the linkage and aligned to the 

RCM. The tooling ball displacement throughout the spherical linkages’ full range of 

motion was measured using a calibrated xyz stage (M-462, Newport Corp., Irvine, CA) 

and attached indicator (Model 25164-10, The L.S. Starrett Company, Waite Park, MN). 

The measured tooling ball deviation was < 12.5 µm along the x, y and z axis. 

 The motorized needle driver is mounted to the forward spherical linkage to insert 

and retract the needle (Figure 5.2).  The needle driver is mounted such that the axis of the 

needle intersects the RCM of the spherical linkage.  The robot implements the RCM in a 

unique fashion compared to previous designs for small animal interventions.  The RCM 

of the system is positioned at the target location within the animal, using the 3-axis xyz 

linear stage.  Next, the needle driver inserts the needle to the RCM location, which also 

corresponds with the target.  This is a clear divergence from previous robotic designs 

where the RCM is typically placed on the skin surface.  The RCM is positioned at the 

target rather then the skin to improve targeting accuracy through simplification of the 

needle driver design.  The needle driver is not required to position the needle tip at a 

range of depths.  Rather, the needle driver only needs to position the needle tip in either 

an inserted or retracted position. The use of a hard stop to control the needle’s inserted 

position eliminates the need for encoders to track the driver position. As part of the robot 

calibration procedure, the needle is adjusted to locate the inserted needle tip position at 

the RCM of the robot’s linkages. 

 The electronics of the robot are divided into two separate control systems: one 

system for the xyz stage and one system for the spherical linkage and needle driver.  The 

spherical linkage and needle driver are driven by stepper motors controlled by a multi-

axis dual-loop controller (MAXNet, Pro-Dex Oregon Micro Systems, Oregon, WA) and 

stepper motor drivers (BSD-01v2, Interinar Electronics, Tampa, FL).  The xyz stage is 
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powered by three stepper motors coupled to lead screws.  The stepper motors are 

controlled by a multi-axis controller with integrated stepper motor drivers (DMC2133 

with SDM-20242, Galil Motion Controls, Rocklin, CA).  Each axis of the xyz stage 

contains a linear encoder, which feeds into the multi-axis controller.  Custom closed-loop 

software on the controller monitors the encoders to compare the target position of each 

axis against its desired position. Both control systems are interfaced to a host PC via an 

ethernet hub.  Custom software on the host PC sends programs and commands to each of 

the controllers.  The user enters the desired position and orientation of the needle into the 

PC. The software then uses appropriate inverse kinematic equations to calculate the 

appropriate commands to send to each controller. 

5.2.2 Robot Calibration 

5.2.2.1 Coordinate System Calibration 

The coordinate system of the robot was calibrated to ensure accurate control of the robot 

position.  The coordinate system of the robot is aligned to the three axes of the xyz linear 

stage and tracks the position of the device's RCM. The RCM position was calibrated by 

repositioning the xyz linear stage at 7.5 mm increments along each axis covering a total 

range of ±15.0 mm, ±15.0 mm and ±7.5 mm. At each position, the encoder count for each 

of the xyz linear stage’s three axes was recorded using a depth gauge (Model 2776S, 

Mitutyo Canada, Toronto, ON) mounted onto a calibrated manual xyz stage (M-462, 

Newport Corp., Irvine, CA).  The encoder step size for the xyz linear stage was 

calculated by averaging the measurements along each axis. The flatness, straightness and 

perpendicularity of each axis of the XYZ linear stage were also verified using a granite 

surface plate (Grade B-18, The L.S. Starrett Company, Waite Park. MN), indicator 

(Model 25164-10, The L.S. Starrett Company, Waite Park, MN) and the same calibrated 

manual xyz stage used earlier to determine the stability of the RCM.  Flatness was 

evaluated by running the indicator along the surface of the stage for each of the three 

translational axes and recording any deviations.  Straightness was evaluated by placing 

the indicator onto a surface perpendicular to a translational axis.  The stage was then 

advanced a known distance along the axis and this distance compared to the distance 

measured by the indicator.  The straightness measurement was completed three times; 
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once for each of the translational axes. The perpendicularity was evaluated by placing the 

indicator against surfaces parallel to a translational axis.  The stage was then advanced 

along the axis and the indicator recorded for any motion. The deviation of the flatness, 

straightness and perpendicularity was ≤ 1.81 µm, ≤ 0.77 µm and ≤ 74.4 µrad 

respectively. These values were all measured over 20 mm of stroke. 

 The angular orientation of each of the two arms in the forward spherical linkages 

was also calibrated.  The robotic system was first placed onto a granite surface plate, 

which served as a reference plane. Each of the two arms was independently orientated so 

that one arm was in a plane perpendicular and one arm was in a plane parallel to the 

granite surface.  Each arm was adjusted to within 2.5 µm of the perpendicular or parallel 

plane using the same calibrated manual xyz stage and indicator as earlier.  The encoder 

values of the two encoders in the spherical linkage were recorded with the arms in this 

orientation.  The two arms were then rotated 90° once. The encoder values of the second 

orientation were recorded giving the step size and absolute reference of the encoder home 

position. 

5.2.2.2 Optical Needle Tip Calibration to RCM 

To complete an intervention, the RCM of the robot is translated to correspond with the 

localized position of the target.  It is therefore of the utmost importance that the needle tip 

reaches the RCM when it is at the inserted position.  Thus, a method to accurately 

calibrate the needle tip to the RCM is critical to the success of the robotic system.  Waspe 

et al. previously developed a method to evaluate the RCM calibration of a needle in a 

robotic system for small animal interventions.17  The method involved photographing the 

needle tip using a high-resolution macro lens.  The camera was fixed in two planes 

perpendicular to each of the robot’s rotational axes.  In each plane, a 23-gauge needle 

was photographed at predetermined angles throughout the respective axes’ full range of 

motion.  In each photograph, the needle was then segmented and its center line 

calculated.  Using the center lines, the location of the RCM was calculated by 

determining the center of rotation of the needle axes.  The calibration error was 

determined by calculating the distance of the needle axes from the RCM point.  

Unfortunately, this calibration method is limited given our robotic system RCM 
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implementation.  The method by Waspe et al. only accounts for the location of the needle 

axis and not the needle tip.  The needle axis may travel very closely to the RCM but the 

needle tip may be much further from the RCM depending upon its insertion depth.  Thus, 

the needle may miss the target even through the reported calibration error was quite 

small.  To avoid this problem, the calibration method of Waspe et al. was modified to 

account for the needle tip position. 

 Calibration of the robot was again completed using a CCD camera (EOS-1D 

Mark IV, Canon Canada Inc., Mississauga, ON) and a high-resolution macro lens (MP-E 

65 mm f/2.8 1-5x, Canon Canada Inc., Mississauga, ON).  The pixel size of the images 

captured using this camera and lens was approximated to be 1.0 µm.  A length of 27 

gauge drill stock (Model 3009A239, Mcmaster-Carr, Aurora, OH) sharpened to form a 

conical tip was mounted onto the needle driver.  The insertion depth of the needle was 

adjusted using a set-screw on the needle driver.  The set-screw was iteratively adjusted 

until the magnitude of tip motion in both rotational axes was minimized in the camera 

viewfinder.  The needle was then photographed in two planes perpendicular to each of 

the rotational axes.  For each plane the needle was photograph five times at 

approximately equally spaced angular positions.  In the pitch axis the needle was 

photographed over a range of 60°.  In the roll axis the needle was photographed over a 

range of 120°.  

 Once all the photographs had been acquired, the needle tip was segmented in each 

image using a semi-automated algorithm developed in MATLAB (The Mathworks Inc., 

Natick, MA).  A Sobel edge detector was first applied to the needle tip images.  The 

identified edge points from the Sobel edge detector, which followed the outer edge of the 

needle tip, were detected based on a user initialization.  A linear least squares regression 

was applied to the detected points to determine the lines of best fit for both of the two 

edges of the needle tip.  The bisector of the two lines of best fit was then calculated.  The 

needle tip location was finally determined by calculating the intersection of the bisector 

with the detected points of the needle edge.  This process was repeated for each 

photograph to yield a set of tip positions for each of the planes.  The calibration error in 
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each plane was then calculated by determining the total range of movement of the needle 

tip over the full range of motion in the two rotational axes. 

5.2.2.3 Calibration Fixture Needle Tip Calibration to RCM 

A calibration fixture was introduced to simplify the needle tip calibration process.   The 

fixture consists of a Delrin plastic block with a flatness verified to within 25.4 µm 

(Figure 5.3).  The calibration fixture was itself verified to ensure its top surface matched 

the RCM position.  The fixture was mounted to the robot using two 6.35 mm diameter 

aluminum shafts (Figure 5.3).  The shafts were machined to have an approximate 200 µm 

eccentricity in their diameter.  By rotating the aluminum shaft, the top surface of the 

calibration fixture can be adjusted upwards and downwards to match the RCM location.  

The correct height of the block was determined by mounting the fixture to the robot and 

advancing the needle driver to the fully inserted position.  A needle was then placed into 

the loosened needle holder of the driver. The needle was slowly lowered in the holder 

until its tip was at the surface of the Delrin block.  The needle tip was identified as being 

at the block surface by lightly sliding a 25.4 µm steel shim back and fourth while 

lowering the needle.  The needle tip caught the shim and no longer allowed it to slide 

freely when in contact with the needle tip.  The needle holder was then tightened to fix 

the inserted needle tip to correspond with the block surface.  The calibration block was 

then detached from the robot and the needle tip observed using the viewfinder of the 

camera and macro lens.  This process underwent several iterations of calibration fixture 

adjustment until needle motion was minimized in the camera viewfinder.  With needle 

motion minimized, the eccentric shaft was fixed with a set-screw to maintain the 

appropriate calibration fixture position.  The calibration fixture can then be mounted to 

the robot and used to calibrate the needle tip as needed. 

 The calibration fixture reduces the time required to complete needle calibration. 

Ccalibrating the needle with a camera requires an iterative process of adjusting the needle 

insertion depth every time the needle is calibrated.  Iterative calibration is time 

consuming and requires approximately 30 minutes to complete.  On the other hand, the 

calibration fixture requires only one iterative calibration of the fixture itself.  Once the 

fixture is calibrated, it can be mounted to the robot and used to calibrate the needle tip in 
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less than five minutes.   The results of the calibration using the fixture were validated 

using the camera and macro lens.  The needle was again imaged at five approximately 

equally spaced positions in planes perpendicular to the roll and pitch axes.  The needle 

tips were then localized in each of the photographs using the previously described 

technique.  The calibration error was calculated by determining the total range of 

movement of the needle tip in each plane.  The calibration results of the calibration 

fixture were compared to the iterative optical calibration results to determine the 

difference in the accuracy of the two methods. 

 

Figure 5.3: Photograph of the calibration fixture used to set the needle tip position at the RCM when the 
needle driver is in its forward position.  The fixture consists of a Delrin plastic block that is mounted to the 
robot via two aluminum shafts, one attached to the block and one attached to the robot (same shaft 
supporting the fiducials visible in Figure 5.2). The needle height was set by slowly lowering the loosened 
needle until its tip was at the surface of the shim on top of the Delrin block. 

The repeatability of the needle driver was characterized to ensure the stability of the 

needle tip calibration.  The needle tip will quickly become un-calibrated if the needle 

driver does not consistently and reproducibly place the needle tip to the correct depth, 

which corresponds with the RCM.  To characterize the needle driver repeatability, the 

needle orientation was adjusted to be fully upright using the spherical linkage encoders.  
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The needle was then inserted and retracted nine times while maintaining a constant 

orientation.  Each time the needle was inserted, it was photographed using the high-

resolution macro lens.  The location of the tip was calculated in each of the nine 

photographs using the needle tip localization technique described during RCM 

calibration.  The repeatability was characterized by determining the standard deviation of 

the needle tip position in the photographs. 

5.2.3 Robot to micro-CT Robot Registration 

5.2.3.1 Registration Process 

A two-stage registration process was developed to register the coordinate system of the 

robot to the micro-CT scanner (eXplore Ultra Locus, General Electric Healthcare 

Biosciences London, ON, Canada).  The two-stage registration was developed to achieve 

a balance between a high quality registration and the time requirements of an end user to 

complete a pre-clinical intervention.  Completion of the primary first step of the 

registration requires that a removable 6.35 mm borosilicate fiducial bead (McMaster-

Carr, Cleveland, OH) be mounted onto the device at the RCM.   In addition, an array of 

six more borosilicate bead secondary fiducials was mounted onto the robot below the 

animal bed (fiducial array visible in Figure 5.2).  With the RCM fiducial bead attached, 

the robot was positioned at four different locations within the micro-CT bore, and a CT 

image was obtained each time.  Using registration software developed in MATLAB (The 

Mathworks Inc., Natick, MA), the rigid body transformation between the two sets of 

coordinates was calculated by comparing the position of the RCM fiducial in robot 

coordinates to its position in each of the four images.  This primary registration can be 

used alone to guide to the robot to targets in micro-CT images.   However, if the robotic 

system is removed and then reattached to the micro-CT bed, this primary registration is 

no longer valid due to variability in robot reattachment.16  Unfortunately, repeating the 

primary registration each time the robot is reattached to the micro-CT to complete an 

intervention is time consuming and laborious.  To avoid constant repetition of the 

primary registration a secondary registration was developed. 
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The secondary registration takes advantage of the six borosilicate secondary 

fiducials attached to the robot below the animal bed (Figure 5.2).  During primary 

registration, these six fiducials are imaged along with the RCM fiducial bead.  One of the 

scans acquired for the primary registration is of the robot at its home position.  To 

complete the secondary registration, the reattached robot and six secondary fiducials are 

imaged with the robot at its home position.  The registration software is then used to 

calculate the rigid body transformation using the six secondary fiducial positions in the 

primary registration home scan and the secondary fiducial positions in the secondary 

registration home scan.  This secondary registration will account for and correct the 

variability introduced when the robot is reattached to the micro-CT scanner.  A target in 

the micro-CT images can then be localized in robot coordinates by applying both 

registrations.  Through the secondary registration, the end user is only required to acquire 

one image at the initiation of an intervention, rather then four.  Furthermore, imaging of 

the fiducials for secondary registration can be simultaneously acquired while imaging the 

small animal, to localize targets. Since the small animal must always be imaged, the 

secondary registration does not increase the total number of scans required and allows for 

the primary registration to be reused across multiple interventions.  Unfortunately, use of 

the secondary registration will also reduce overall targeting accuracy since two 

registration errors, from the primary and secondary, will be combined.  The primary 

registration can be used by itself to improve targeting accuracy; however, this will be at 

the expense of increasing total registration time.  Use of the combined registration 

reduces time for procedures at the expense of accuracy.  The end-user must determine 

which registration process will best suit their application needs. 

5.2.3.2 Registration Software 

 The fiducial bead mounted onto the robot RCM was segmented and its centroid was 

determined in each of the four images acquired for the primary registration.  

Segmentation was accomplished through a threshold based region-growing.  The center 

of the segmented RCM fiducial was then calculated using a squared-intensity-weighted 

centroiding.  The centroiding algorithm used was found in simulated images to have an 

error of < 5% of the image voxel size in localizing 3D centroids.23   The centroided RCM 
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fiducial positions were then rigidly registered to their homologous robot coordinates 

using a least squares algorithm.24  The results of the primary registration represented the 

translation and rotation required to align the coordinate system of the micro-CT scanner 

with the robotic system.   

 The secondary registration first required that during the primary registration, with 

the robot at its home position, the centroids of the six secondary fiducial beads are 

determined using the technique previously described.  During the secondary registration, 

again with the robot at its home position, these six secondary fiducials are reimaged and 

their centroids determined.  The two sets of centroids are then registered using a rigid 

body transformation.  This secondary registration represents the transformation required 

to realign the robot axes at the time of the intervention with the robot axes at the time of 

the primary registration.  The errors of the primary, secondary and combined registration 

were characterized by calculation of the fiducial registration error (FRE) and target 

registration error (TRE).25  The TRE of the primary registration was calculated by 

acquiring five additional images, not used in the registration, of the RCM fiducial at 

positions in the robot’s full range of motion.  The secondary and combined TREs were 

calculated by attaching and reattaching the robot to the micro-CT scanner bed five times 

with the RCM fiducial still attached.  In each image, five of the six secondary fiducials 

were used to calculate the secondary registration.  The sixth secondary fiducial in each of 

the five images was used to calculate the secondary TRE.  The combined TRE in these 

five images was calculated using the position of the RCM fiducial in the images 

following robot reattachment to the scanner bed. 

5.2.4 Robot Targeting Accuracy 

5.2.4.1 Targeting Accuracy Phantom Design 

Tissue-mimicking phantoms were used to quantify the targeting accuracy of the robotic 

device.  The phantoms consist of a 15% by weight gelatin solution (Porcine Skin Type A, 

Sigma-Aldrich, St. Louis, MO) that forms a cross-linked matrix.26    
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5.2.4.2 Targeting Accuracy Experiment 

Two separate sets of targeting experiments were completed.  The first set used the 

combined registration process to guide the robot to targets in tissue-mimicking phantoms.  

The second set used only the primary registration to guide the robot. For each set, the 

targeting phantom was first secured to the phantom holder of the robotic device and the 

robot inserted into the bore of the eXplore Locus Ultra micro-CT scanner.  The phantom 

was then imaged using a 16 second anatomical scan at 140 kVp and 20 mAs.  The image 

was reconstructed to yield an image with 153.9 µm isotropic voxel size (example shown 

in Figure 5.4).  The image of the phantom was then visualized within MATLAB.  Ten 

image voxel coordinates within the phantom were manually localized and selected as 

target positions.  For each set, the location of each of the 10 target voxel coordinates 

within robot coordinates was calculated using either a combined registration or a primary 

only registration.   For each target, the robot RCM was placed at the target location, the 

needle inserted and an image acquired.  Throughout the targeting experiments, the needle 

angulation remained constant, at approximately 90° in the roll axis and 45° in the pitch.   

Needle angulation was maintained constant to allow targeting accuracy to be quantified 

independently of angle. 

For each acquired image, the distance of the needle from target voxel coordinates 

was determined by first segmenting the inserted needle using a threshold-based region 

growing algorithm.  The center line of the needle in the image was estimated using 

principal components analysis (PCA) to fit a 3D line to the segmented needle.  The 

targeting accuracy was quantified by calculating the distance of each 3D fitted line to the 

target voxel.  The distance of the line to the target voxel represents the accumulation of 

error from a number of sources including robot positioning error, registration error, 

needle calibration error and needle deflection.    

5.2.4.3 Needle Angulation Accuracy 

We used a gelatin phantom to evaluate the variation in needle positioning over the full 

range of needle angulation.  The gelatin phantom was placed onto the animal bed of the 

robot and the robot was then oriented in seven different positions (see Table 5.1) 
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covering the angular range of the robot motion.  At each orientation the needle was 

inserted into the gelatin phantom and imaged by the micro-CT scanner.   In each image, 

the needle center-line was calculated using the same technique previously described.  

Ideally, all seven center-lines should intersect at a common point in space (i.e., the RCM) 

if no variation in needle positioning is present with angulation.  An iterative solution was 

used to calculate the point in space with the smallest sum of squares distance from each 

of the centerlines.  The variation in needle positioning over the full range of needle 

angulation was then quantified by calculating the distance of each center-line to the point 

of best fit.  

 

Figure 5.4: View of reconstructed CT scan used for the needle targeting experiment. For each target, the 

robot RCM was placed at the target location, the needle inserted and an image acquired. For each acquired 

image, the distance of the needle from target voxel coordinates was determined by first segmenting the 

inserted needle using a threshold-based region growing algorithm.  The center line of the needle in the 

image was estimated using principal components analysis (PCA) to fit a 3D line to the segmented needle. 
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5.2.5 Preclinical Application 

All in vivo imaging was performed under a protocol approved by the University Health 

Network Animal Care and Use Committee. Measurements were performed in two female 

SCID mice, each bearing a single subcutaneous human cervix carcinoma tumour 

(ME180).  A tumour was established in the first mouse by suturing a 2 to 3 mm3 tumour 

fragment, along with a 1.5 mm radio-opaque pellet (Beekley Co., Bristol, CT), into the 

dorsal subcutaneous tissue. A tumour was established in the second mouse by suturing a 

2–3 mm3 tumour fragment into the subcutaneous tissue of the hind limb. The experiment 

was performed once the tumours had reached approximately 1 cm in diameter. The mice 

were anesthetized using a 2% by volume isoflurane-oxygen mixture, the hair removed 

from their tumours’ areas, and they were immobilized in a supine position with their front 

and back paws taped to a custom-built mouse platform mounted on the robot. The mice 

were imaged using a standard anatomical imaging protocol consisting of a 16 second scan 

with an 80 kVp and 60 mAs.  The images were reconstructed to yield a 153.9 µm isotropic 

voxel size.  

 The mouse bearing the dorsal tumour with the implanted radio-opaque pellet was 

used to evaluate the robot’s ability to perform image-guided needle placement in vivo. 

Similar to in vitro experiments, a 23-gauge needle was mounted on the needle driver. The 

tumour was immobilized by taping it onto a plastic block and surrounding it with pieces 

of rigid foam. A pre-needle insertion CT scan was performed to visualize the radio-

opaque pellet. The robot RCM was placed at the centre of mass (CM) of the radio-opaque 

pellet and the needle was inserted. A post-needle insertion scan was acquired to confirm 

successful contact with the target. This process was repeated for three angles of insertion 

chosen randomly, and the distance between the needle tip and surface of the radio-opaque 

pellet measured. 

 Interstitial fluid pressure (IFP) measurements were performed in the mouse 

bearing the hind limb subcutaneous tumour, using the wick-in-needle technique.27  

Measurements were made using a 23-gauge needle containing both a front and side port 

connected to a pressure transducer (Model P23XL, Harvard Apparatus, Canada), which 

in turn was connected to a data acquisition system (PowerLab 4/35 with LabChart Pro, 
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ADInstruments Pty Ltd., USA) through 50 cm of PE20 polyethylene tubing (Becton 

Dickinson, Franklin Lakes, NJ, USA). The entire system was flushed with a heparin 

sulphate/saline solution (1:10). A pre-needle insertion scan was performed, the tumour 

indentified, and a position chosen such that the side port of the needle would be inside the 

tumour volume, while the front port would be in healthy tissue.  IFP measurements were 

made as the needle was inserted, and maintained for 30 sec after reaching the target 

location. A post-needle injection scan was performed to confirm the location of the 

needle inside the tumour. The needle was then retracted by approximately 3 mm while 

continuously monitoring IFP. The two positions were chosen to demonstrate the 

importance of correct needle placement on stable IFP measurements.   

5.3 Results 

Table 5.1 provides a summary of the results obtained for each of the experiments 

described in the methods. 

5.3.1 Robot Calibration 

5.3.1.1.1 Optical Needle Tip Calibration Error to RCM 

The RCM calibration error represents the range of motion of the needle tip as the robot’s 

rotational axes are moved through its full range of motion.   In the roll plane, the RCM 

calibration error range was found to be ∆x= 43 µm and ∆y= 28 µm, where the x and yaxis 

represent the horizontal and vertical axis orientated perpendicular to the z axis which 

represents the long axis of the CT bore.  In the pitch direction the RCM calibration error 

was ∆y=69 µm and ∆z= 30 µm.  Added in quadrature the total errors were ErrorRoll=51 

µm and ErrorPitch= 75 µm.  The maximum calibration error is expected to occur at the 

extremes of the rotational axes.  Figure 5.5 displays a composite photo of the calibration 

photos and the segmented needle tip locations. 

5.3.1.2 Calibration Fixture Needle Tip Calibration Error to RCM 

RCM calibration was also completed using a precision calibration block.   In the roll 

plane, the RCM calibration error was ∆x=36 µm ∆y=70 µm.   In the pitch plane the RCM 
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calibration error was ∆y=11 µm and ∆z=5 µm.  Added in quadrature the total errors were 

ErrorRoll=75 µm and ErrorPitch= 12 µm.   

5.3.1.3 Needle Driver Repeatability 

The needle driver must consistently position the needle tip at the same location in space 

following repeated insertions and retractions.  Significant variations in needle positioning 

by the needle driver will reduce the ability of the system to maintain calibration.  Needle 

Table 5.1: Summary of the results obtained for each experiment. 

 Error (µm) 
A.1  Optical Needle Tip Calibration Error to RCM   
 Roll plane  

 ∆x 43 
 ∆y 28 

 Pitch plane  
 ∆y 69 
 ∆z 30 

A.2  Fixture Based Needle Tip Calibration Error to 
RCM 

 

 Roll plane  
 ∆x  36 
 ∆y 7 

 Roll plane  
 ∆y 36 
 ∆z 7 

A.3   Needle Driver Repeatability  
 σneedle 9 
B  Robot Registration  
 Primary  

 FREprimary 21 
 TREprimary 31 

 Secondary  
 FREsecondary  70 
 TREsecondary 79 

 Combined  
 TREcombined 139 
C  Robot Positioning Accuracy  
Primary Registration Positioning Accuracy   
 Totalerror 131 ± 25 
Combined Registration Positioning Accuracy  
 Totalerror 206 ± 20 
C.3  Needle Angulation Accuracy  

 σangle (< 50° ) 72± 62 
 σangle (< 30° ) 51± 31 
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driver repeatability is the standard deviation of needle depth in multiple insertion 

procedures.  The needle driver repeatability was found to be σneedle=±9 µm. 

 

Figure 5.5: Composite photographs of the calibration photos showing the pitch (top left) and roll (top 
right) of the needle throughout its full range of motion.  The bottom two photographs show close-up views 
of the segmented needle tip locations in the pitch (bottom left) and roll (bottom right) directions. 

 

5.3.1.4 Robot to Micro-CT Robot Registration 

The primary robot registration is the transformation required to convert the micro-CT 

scanner coordinate system to the robot coordinate system, and was calculated using the 

location of the fiducial bead at the RCM of the robot. The fiducial localization and 

registration errors were found to be FREprimary=
 21 ± 6 µm and TREprimary=

 31 ± 12 µm. 

 The secondary robot registration is the transformation required to relate the robot 

coordinate system at the time of an intervention to the time of the primary registration, 

and was calculated using fiducials fixed to the robot frame. The fiducial localization and 



www.manaraa.com

138 

 

 

registration errors were found to be FREsecondary=
 70 ± 25 µm and  TREsecondary=

 79 ± 14 

µm. 

 The combined registration is the combined transformations performed in the 

primary and secondary registrations.  The combined registration error represents the total 

error of the complete registration process.  Since the combined registration itself has no 

fiducials, there is no fiducial registration error to report.  For the combined registration 

the TREcombined=139 ± 63 µm. 

5.3.2 Robot Positioning Accuracy 

5.3.2.1 Combined Registration Positioning Accuracy 

The needle positioning accuracy is the distance of the segmented needle track in the 

gelatin phantom from the target pixel in a micro-CT image.  The targeting experiments 

were completed with the rotational axes of the robot approximately constant: with the 

needle pose at 90° in the roll plane and 45° to the CT bore in the pitch plane.  The 

calculated mean targeting errors along the three images axes were: Xerror=194 ± 16 µm, 

Yerror=33 ± 17 µm and Zerror=57 ± 19 µm.  The total mean error of the needle position was 

Totalerror= 206 ± 20 µm.  An ANOVA test (p = 0.05) found a significant difference 

between the mean targeting errors of each axis.  A Tukey test (p = 0.05) found the errors 

of all axes to be significantly different from each other. 

5.3.2.2 Primary Registration Positioning Accuracy 

A second set of targeting experiments were completed using only the primary 

registration.   The calculated mean targeting errors along the three images axes were 

Xerror=119 ± 22 µm, Yerror=19 ± 10 µm and Zerror=46 ± 24 µm.  The total mean error of 

the needle position was Totalerror= 131 ± 25 µm. An ANOVA test (p = 0.05) found a 

significant difference in the mean targeting errors of each axis.  A Tukey test (p = 0.05) 

found the errors of all axes to be significantly different from each other. 
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5.3.2.3 Needle Angulation Accuracy 

The consistency of needle accuracy was evaluated by inserting the needle multiple times 

to the same position in space at varying angles of attack (10 to 50 degrees).  The results 

for these experiments are given in Table 5.2, and show that the average normal distance 

from each axis to the fixed target was determined to be Errorangle = 72±62 µm.  

5.3.2.4 Preclinical Application 

The experimental setup used in each of the small animal experiments is shown in Figure 

5.6. The robot was used to target a radio-opaque pellet implanted in a subcutaneous 

dorsal tumour under image guidance. Post-needle insertion CT projection images showed 

that the needle was successfully delivered to the target (Figure 5.8). Measurement of the 

distance between the needle tip and the surface of the pellet was difficult due to partial 

volume effects and beam hardening artifacts caused by the radio-opaque pellet and steel 

needle. The measured distance between the needle tip and pellet surface was 0.41±0.12 

mm. The CM of the radio-opaque pellet shifted 0.85±0.28 mm relative to its pre-needle 

insertion position. A real time CT scan of the final needle placement showed that the shift 

in pellet position was due to contact with the needle as well as tissue deformation during 

needle insertion.   

Robot-guided IFP measurements were made at two locations in the subcutaneous 

hind limb tumour.  In the first location the post-needle insertion CT scan demonstrated 

Table 5.2: Summary of needle angulations used to test needle deflection at different angles of 

attack.  The variables α and β represent the angle of the primary and secondary crank 

measured by the encoders. The angle of attack represents the angle between the needle axis 

and the normal vector to the surface of the phantom. 

Scan α° β° 
Angle of attack 

(degrees) 
Error 
(µm) 

1 45 135 11 34 
2 25 155 14 51 
3 25 115 21 24 
4 66 155 21 110 
5 -5 114 30 34 
6 60 178 25 56 
7 105 172 50 189 
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that the front port of the needle was straddling the boundary between tumour and healthy 

tissue, and the side port was in the centre of the tumour (Figure 5.7a).  The needle was 

then retracted 3 mm and a CT scan showed that both the front and side ports of the needle 

were inside the tumour volume (Figure 5.7b).  The accuracy and stability of the wick-in-

needle technique requires that both ports of the needle are exposed to a similar external 

pressure.  If the pressure at one port is substantially lower than the other, fluid flow is 

directed out of the IFP system and a decreasing pressure is measured.  Region III of 

Figure 5.7c demonstrates this effect.  When the needle was retracted to the second 

position shown in Figure 5.7b, the IFP measurement stabilized (Figure 5.7b, region IV).  

This highlights the important of using an accurate position system under image guidance 

to perform reliable IFP measurements. 

The robot was used to target a radio-opaque pellet implanted in a subcutaneous 

dorsal tumour under image guidance.  Post needle insertion CT projection images showed 

that the needle was successfully delivered to the target (Figure 5.8).  Measurement of the 

distance between the needle tip and the surface of the pellet was difficult due partial 

volume effects and beam hardening artifacts caused by the radio-opaque pellet and steel 

needle.  The measured distance between the needle tip and pellet surface was 0.41±0.12 

mm.  The CM of the radio-opaque pellet shifted 0.85±0.28 mm relative to its pre-needle 

insertion position.  A real time cine-CT scan of the last needle placement showed that the 

shift in pellet position was due to contact with the needle as well as tissue deformation 

during needle insertion. 

 



www.manaraa.com

141 

 

 

 

 
  

 

 
 

  

 
    

  

 
   

Figure 5.6: Photograph of the experimental setup used for the animal interventions (a, top) outside, and (b, 
bottom) inside of the bore of the CT scanner. The only part of the apparatus that resides inside the scanner 
is the mouse bed and part of the needle driver, to minimize artifacts in the image. 
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Figure 5.7: Wick-in-needle measurements of IFP demonstrating the importance of needle placement for 
stable and accurate results. (a) The front port of the IFP needle is straddling the tumour boundary (outline), 
while the side port is in the centre. (b) Both the front and side ports are within the tumour boundary 
(outline). (c) Results of IFP measurements showing (I) the pre-needle insertion baseline (II) the signal as 
the needle is inserted; (III) the measured IFP at the position shown in (a); and (IV) the measured IFP at the 
position shown in (b). 
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5.4 Discussion 

 

5.4.1 Robot Calibration 

During the initial setup of the robot linkages, the RCM of the robot was found to remain 

relatively fixed in space with a maximum deviation of 12.5 µm.  As a result, the 

calibrated needle tip would be expected to track a path corresponding closely to the 

surface of a sphere when the robot is adjusted through its full range of motion.  The 

center of the sphere is the RCM position and the radius of the sphere is the needle 

calibration error.  The calibration error is quantified by measuring the range of pixels the 

needle travels along each axis in each plane.  As shown in Figure 5.5, the ∆x and ∆z errors 

should be equal and the two ∆y errors should both be equal to half this value.  Furthermore, 

the segmented needle tips in both planes should form a circular path.  However, this is 

not true for the obtained results.  A number of sources of error exist in the methods used, 

causing the measured calibration error to deviate from this ideal case.  First, the use of 

photography to validate the calibration results in a three-dimensional path being projected 

            

 

Needle 
 

Pellet
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Figure 5.8: Projection views obtained from two sequential CT scans that demonstrate the ability to perform 
image guided needle placement in vivo.  (a, left) A pre-needle insertion image highlighting the location of 
the needle, the tumour (red outline), and the radio-opaque pellet (fiducial). (b, right) A post-needle 
insertion image showing the needle making contact with the radio-opaque pellet. 
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onto a two-dimensional plane.  Errors in positioning the camera truly perpendicular to 

each of the rotational axes will result in the needle paths failing to track a circular path.  

Secondly, to measure the radius of the sphere, the needle tip must track a path of at least 

90 degrees or greater.  In the roll axis, the needle traveled approximately 120 degrees 

allowing the sphere to be correctly characterized.  In the pitch direction, the robot’s range 

of motion is limited to approximately 60 degrees.  The track measured in the pitch axis 

travels a smaller sector of the sphere compared to the roll axis.  The errors measured in 

the pitch axis will inherently underestimate the calibration error.  The roll axis results 

therefore are a better characterization of the needle calibration errors. 

 The calibration results demonstrated that the roll axis has the largest error, as 

expected.  However, for the optical calibration, the pitch axis contains the largest errors 

even though the pitch error should be inherently less.  The likely cause of this aberration 

is deflection in the shaft of needle itself.  Deflections inherent to any needle will result in 

overestimates of calibration error as the distance traveled by the needle will be amplified 

by deflection.  Depending on how the needle is mounted, this error may occur in the roll 

plane, the pitch plane or some combination of the two.  Two different needles were used 

for the optical calibration and the fixture calibration.  The needle selected for the optical 

calibration likely deflected in the pitch direction, resulting in an unexpectedly large pitch 

calibration error.  Needle deflection along with the previously discussed sources of error 

cause the calibration results to deviate from their expected results.    

 The radius of the calibration error sphere, or the true calibration error, is shrouded 

behind a number of other unavoidable error sources.  However, an estimate of the 

independent needle tip calibration error can be distilled from reported results.  As 

discussed, the pitch axis lacks sufficient range of motion to accurately estimate the sphere 

radius.  An estimate must therefore come from the roll results.  Two potential cases exist 

for the roll results: either needle deflection occurred in the roll plane or deflection did not 

occur in the roll plane.  If no deflection errors exist in the roll plane, the ∆y measured in 

the roll direction should be approximately half ∆x.  This case is true for the optical calibration 

results.  The radius of the calibration error sphere is therefore approximately equal to the 

mean of ∆y and half of ∆x or 25 um.  If deflection did occur, the relationship between ∆x 
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and ∆y no longer holds true.  For the fixture calibration, deflection is evident with ∆y much 

larger then ∆x.  In the deflection case, the most reasonable estimate of the sphere radius is 

half of ∆x.  ∆x is the most reasonable estimate since it corresponds with the calibrated needle 

axis.   For the calibration fixture, the radius can be estimated to be approximately 18 um.  

The expected standard deviation of both calibration errors is the needle driver 

repeatability of 9.1 um. 

 The two estimates of the calibration errors for the optical method and fixture 

method are extremely close and less than one standard deviation apart.   The results 

suggest that the calibration obtained using these two methods are equivalent.  However, 

calibration can be completed much faster using the fixture rather than the iterative optical 

method.  Therefore, the calibration fixture should be the preferred method of completing 

calibration.  

5.4.2  Robot Registration 

For the primary registration (robot coordinates to fiducial bead centroids in micro-CT 

images), the robot coordinates are measured with high accuracy using a calibrated XYZ 

positioning stage with a measurement resolution of 0.1 µm.  However, the secondary 

registration is a registration of fiducial bead centroids from two different micro-CT 

images.  The secondary registration therefore has the centroiding error in both sets of 

coordinates whereas the primary only possesses the error in one coordinate set.  The 

secondary registration would therefore be expected to have twice the fiducial centroiding 

error of the primary registration.  However, the mean TRE of the secondary registration is 

approximately 2.5 times larger than the TRE of the primary registration.  This suggests 

that much of the TRE arises from fiducial localization error (FLE) in the centroiding of 

fiducials in the micro-CT images.  The registration errors would therefore be expected to 

be reduced if using a scanner with higher resolution.  

 Either the primary registration alone or the combined registration can be used to 

guide the robotic device for interventions.  Use of the primary registration would be 

expected to result in much higher targeting accuracy with greater repeatability than the 

combined registration.  The combined registration contains the accumulation of many 
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more error sources then the primary registration.  The combined registration contains 

errors from both the primary and secondary registrations along with errors resulting from 

attaching and detaching the robot from the micro-CT scanner bed.  As a result, the 

primary registration offers the advantage of nearly a fifth of the TRE of the combined 

registration and a much smaller standard deviation.  Unfortunately, the primary 

registration is more time-consuming then the combined registration.  Four scans are 

required to complete the primary registration and they must be repeated every time the 

robotic system is removed from the scanner bed.   In contrast, the combined registration 

can be completed with a single image, which can be acquired simultaneously with 

imaging of the small animal.  Depending on the application, the end user must determine 

the ideal balance between time requirements and accuracy. 

 Waspe et al.16 is the only other method developed to register a robotic system with 

a micro-CT imaging system.  The reported FRE and TRE of the registration process were 

96 µm and 210 µm respectively.  Both the primary and combined registrations offer a 

reduction in error over this method. 

5.4.3 Robot Positioning Accuracy  

The 153.9 µm micro-CT voxel size is relatively large in relation to the desired needle 

targeting accuracy of 200 µm.  Therefore, in order to be able to use the micro-CT to 

meaningfully quantify targeting error, a technique capable of sub-voxel accuracy is 

required.  Unfortunately, the needle tip cannot be localized to sub-voxel accuracy.  

Rather, to achieve the desired measurement accuracy, the needle must be segmented and 

a line of best fit calculated to determine the needle axis in the micro-CT image.  The 

metric used to calculate targeting accuracy is the shortest distance of the needle axis to 

the target.  Unfortunately, this metric does not provide any information about the error in 

needle depth or its associated variability.  Furthermore, the reported errors were measured 

at a constant angle and do not account for variation in targeting accuracy due to needle 

angulation.   The reported targeting errors therefore underestimate the true targeting error.  

The targeting errors can be corrected to better represent the true targeting error by using 

the errors measured during needle calibration and needle angulation testing, which do 
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account for these other factors.  Since these errors are all independent, their means and 

standard deviations can be added in quadrature to estimate the true targeting error. 

The RCM deviation is known to be a maximum of 12.5 µm through the robot’s 

full range of motion.  In comparison, the mean error from the point of best for the robot 

angulation testing was 72± 62 µm.  Therefore, the variation in angular targeting accuracy 

is largely not the result of mechanical errors.  Rather, this error would largely be due to 

needle tip calibration error and needle deflection in the tissue-mimicking phantom.   Error 

resulting from needle tip calibration error is constant and should remain near constant 

with respect to needle angulation.  The large standard deviation observed in needle 

angulation accuracy is likely the result of needle deflection.  As shown in Table 5.2, the 

error was the smallest for angles of attack less than 30° from the normal.  For these small 

angles the mean error was 51 ± 31 µm.  The error tended to increase with larger angles of 

attack.  For the example illustrated in Figure 5.9, for the maximum angle tested of 50° the 

error increased to 188 µm.  These results are not surprising: the larger the angle of attack, 

the more obliquely the needle penetrated the phantom surface and the greater the 

proportion of the needle within the phantom.  Both of these conditions are conducive to 

needle deflection.  Targeting error increases with the angle of attack of the robot is 

largely the result of needle deflection. 

A source of error typically neglected in the literature is the rearward deflection of 

the robot itself during needle insertion.  This error is neither accounted for in the robot 

targeting error or calibration error.  The robot deflection is the result of the entire 

machine shifting due to reactionary forces acting on the needle driver as it advances the 

needle through the tissue. To determine the magnitude of this deflection in our design, a 

brass weight, which exerted 10 N of force, was mounted to the robot RCM.  The 

deflection of the robot with the brass weight was measured using an indicator to be 151 

µm.  However, the needle driver is capable of delivering a maximum force of 2 N, which 

corresponds with a rearward robot deflection of 30 µm. This illustrates the need to make 

the robot as rigid as possible.  Although our system is suitable for inserting needles into 

soft tissue, the rigidity of this device would need to be improved for applications like 

drilling into harder materials like bone. 
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Figure 5.9: A composite image of the needle tracks from the needle angulation accuracy experiment 
(section 5.2.4.3).  All of the needle tracks, with the exception of one track, approached the target point with 
an angle of attack (from the normal) of less than 30 degrees. The one track labeled as (*) illustrates an 
exaggerated needle deflection with the needle approaching the target at 50 degrees from the normal, where 
the needle is perpendicular to the phantom surface. 
 

  

 Combining the measured targeting error with the tip calibration error and 

angulation error, the resultant targeting errors for both the primary and combined 

registration techniques would be 142 ± 41 µm and 213 ± 38 µm.  Including the presence 

of a 2 N axial load, the targeting errors would be 149 ± 41 µm and 218 ± 38 µm.  These 

estimates of targeting error are better representative of the true targeting error of the 

robotic system.  Even with the inclusion of additional error sources, the targeting 

accuracy of the robot is approximately equal to the imaging voxel size of 153.9 µm.  This 

targeting accuracy makes the robot potentially useful for targeting small vessels with a 

high degree of confidence. Although the secondary registration reduces the time 

requirements of interventions, the targeting accuracy is greater than the image voxel size. 
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This method would be useful for targeting larger structures like the left or right ventricle 

of a mouse’s heart or a large tumour.  Since the variability in targeting is relatively low in 

comparison to the mean error, the targeting accuracy could be further improved to 

achieve finer targeting accuracies using micro-CT scanners with smaller voxel sizes.  

One approach to improve the targeting accuracy is introduced by Ramrath et al. to 

measure the magnitude and direction of needle misalignment using a high-resolution 

camera.19   An appropriate correction can then be applied when positioning the needle to 

reduce error from needle misalignment. 

5.4.4 Preclinical Application 

Under image guidance, the robot was able to successfully target a 23G needle to a 1.5 

mm radio-opaque pellet implanted in a subcutaneous tumour. Tissue deformation was 

observed during the initial penetration and retraction of the needle, and could potentially 

result in missing the intended in vivo target. While the effect of tissue deformation was 

negligible in our ability to target a 1.5 mm radio-opaque pellet, it likely worsens with 

smaller targets and with proximity of the target to the skin (where the observed tissue 

deformation was the largest). Using real-time image guidance it may be possible to 

reduce, if not eliminate, the effect of tissue deformation.  

 The wick-in-needle technique requires proper placement of the needle for reliable 

IFP measurements in small tumours. Both the front and side ports of the IFP needle must 

be inside the tumour volume, which becomes difficult in small animal tumours with 

diameters between 5 and 10 mm. The average distance between the front and side port of 

our IFP needle was approximately 5 mm. Therefore, a great deal of uncertainty in 

manually placing the IFP needle in mouse tumours smaller than 10 mm is expected. For 

example, we have found that performing repeated manual needle placement in an intra-

muscular ME180 tumour 7 mm in diameter results in IFP values that differ by a factor of 

five. In this study, we have shown that the robotic position system in combination with 

image guidance provides an accurate method to guide needle placement, and reliably 

perform IFP measurements. Additionally, the design of the robot allows for spatial 

mapping of IFP over the tumour volume and is an application we plan to explore in the 

future. 
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5.5 Conclusion 

The design of a micro-CT guided needle positioning system for small animal intervention 

has been presented.  The system has been developed to achieve a mean targeting error of 

less than 200 µm while maintaining a high degree of user friendliness.  The robot is 

compact enough to operate within the micro-CT bore.  Small animals can be imaged and 

the intervention performed without transporting the animal from one workspace to 

another.  Not requiring transport of the animal reduces opportunities for targets to shift 

from their localized position in the image and simplifies the workflow of interventions.  

An improved method of needle calibration is presented that better characterizes the 

calibration using the position of the needle tip in photographs, rather than the needle axis.  

A calibration fixture was also introduced that dramatically reduces the time requirements 

of calibration while maintaining calibration accuracy.  Two registration modes have been 

developed to correspond the robot coordinate system with the coordinate system of the 

micro-CT scanner.  The two registration modes offer a balance between the time required 

to complete a registration and the overall registration accuracy.   The development of 

slow high accuracy and fast low accuracy registration modes provides the user with a 

degree of flexibility in selecting a registration mode best suited for their application.  The 

errors of the high accuracy primary registration were FREprimary=
 21 ± 6 µm and TREprimary=

 

31 ± 12 µm.  The error in the low accuracy combined registration was TREcombined=139 ± 63 

µm.  Both registration modes are therefore suitable for small animal needle interventions.  

The targeting accuracy of the robotic system was then characterized using targeting 

experiments in tissue-mimicking gelatin phantoms.  The results of the targeting experiments 

were combined with the known calibration and needle deflection errors to provide a more 

meaningful measure of the needle positioning accuracy of the system.  The combined 

targeting errors of the system were 149 ± 41 µm and 218 ± 38 µm using the primary and 

combined registrations respectively.  Finally, pilot in vivo experiments were completed to 

demonstrate the performance of the system in a biomedical application. 
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Chapter 6  

6 Summary and Future Work 

6.1 6.1 Summary of thesis: 

The purpose of the work in this thesis was to develop image-guided needle positioning 

systems to increase the accuracy and repeatability of needle interventions in a variety of 

clinical applications.  Each project involved not only designing a mechatronic system for 

the application, but also interfacing and co-registering each system with various clinical 

US probes and a micro-CT small animal imaging system.  The specific technical 

developments, registration methods, and validation of each system are summarized 

below. 

6.1.1 A 3D Ultrasound-guided prostate biopsy system 

In Chapter 2, we developed a 3D TRUS-guided biopsy system, which can make use of 

any manufacturer’s end-fire TRUS probe that records and displays the 3D locations of 

biopsy cores.1, 2  It is composed of a 3D TRUS imaging subsystem and a passive 

mechanical arm with a fixed remote center-of-motion positioned near the tip of the TRUS 

probe.  The RCM is intended to minimize prostate motion during reorientation of the 

probe when aiming at different targets in the biopsy plan.  The stabilization of the TRUS 

probe and associated linkage is accomplished using a mechanical spring-loaded counter-

balancing system that maintains the position and orientation of the probe even when the 

physician removes his hand from the handle.3  This permits smooth motion of the 

transducer with a light touch of the physician's hand. 

To calibrate and register the system to the 3D US image, the device was 

constrained into a known pose with the US transducer aligned to the RCM of the device.  

This provided a link between the encoder readout to the pose of the linkage, and also 

provided a means to register the first 2D US image in the 3D reconstruction linking the 

image to the device kinematics. 
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By adding 3D information to the prostate biopsy procedure, our system should 

improve the recording procedure as well as the physician’s ability to accurately guide the 

biopsy needle to selected targets. This would be beneficial in cases where the patient was 

diagnosed on biopsy to have atypical small acinar proliferation (ASAP) and requires the 

physician to rebiopsy the same area. Using the 3D TRUS image, the physician was able 

to observe the patient’s prostate in views currently not possible in 2D procedures. 

Overall, our 3D system should result in prostate biopsy procedures that are stereotactic 

and more reproducible, which may lead to higher cancer detection rates and improve the 

yield on repeat biopsy. 

 Finally, integration of our system into the current prostate biopsy procedure 

requires minimal physician retraining as procedural workflow is maintained. By adhering 

to the imaging tools and protocols of current biopsy procedures, clinical integration of 

our 3D system should be cost effective. 

6.1.2 A 3D ultrasound-guided prostate therapy system 

In Chapter 3, we developed a mechanical assisted prostate therapy system, that facilitates 

the physician in performing transperineal prostate therapy procedures, in which the 

needle can be positioned (i.e., ready for insertion) manually with improved accuracy and 

flexibility, and the needle insertion into the prostate is done manually by the physician.4, 5 

Our approach to the problem differs from the prior approaches in that many of the 

benefits of a robotic system (accuracy and improved needle coverage) can be realized 

with the option to control the needle location and trajectory (including oblique) manually. 

 The device was calibrated by constraining the linkage into a known orientation 

providing a fixed link between the encoder readout and kinematics. To register the image 

to the system, a string phantom was fixed to a known position on the device, which was 

in turn submerged into a tank of glycerol and water solution to create a registration 

image.  

 Combining 3D TRUS imaging system with a dynamically adjustable needle 

guide, the physician will be able to place the needle trajectory to selected targets in the 
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3D TRUS image with a mean error that closely matches the ultrasound resolution. This 

would be beneficial as the physician has complete control of the needle and can safely 

manoeuvre the needle guide around obstacles like previously placed needles or a TRUS 

probe. Although this system was tested using a 3D imaging system, this system is also 

compatible with any 2D system and protocol currently in use. Our future direction will be 

to clinically validate our prostate therapy system (delivering brachytherapy first, but able 

to accommodate other prostate therapy approaches like cryotherapy and laser ablation), in 

which all aspects of the procedure will be carried out intra-operatively including 

dosimetry planning, monitoring of prostate changes, dynamic re-planning including 

oblique trajectories and needle placement verification. 

6.1.3 A 3D micro-CT-guided needle positioning system for small 
animal research 

Preclinical micro-injection procedures in various research applications are particularly 

dependent on the accuracy of mechatronic devices, such as micro-CT systems, used to 

guide needle insertion into soft tissues of the animal.6  A foundation of these 

interventions is the ability to accurately localize the position of targets and fiducial 

markers in space using micro-CT images.  A mechatronic device with near-perfect 

positioning accuracy will always miss a target if guided to the wrong position in space 

due to image distortion.  Therefore, the geometric accuracy of micro-CT scanners is 

fundamentally important for the successful completion of interventions by micro-CT 

guided mechatronic needle positioning systems. 

  Chapter 4 describes the development and testing of a traceable calibration 

phantom and technique to evaluate the geometric accuracy of five different micro-CT 

scanners, representing four scanner models.  The geometric errors detected within micro-

CT images by this study are not immediately obvious but could be serious in an 

application (such as a micro-CT guided small animal intervention) that may require 

targeting accuracies of less than 200 µm.7 Use of this calibration phantom should 

therefore be considered for any application that demands high geometric fidelity in 

images.8   
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 In chapter 5, the design of a micro-CT guided needle positioning system for small 

animal intervention has been presented.  The system has been developed to achieve a 

mean targeting error of less than 200 µm while maintaining a high degree of user 

friendliness.  In addition, the robot is compact enough to operate within the micro-CT 

bore.  Small animals can be imaged and the intervention performed without transporting 

the animal from one workspace to another.  Not requiring transport of the animal reduces 

opportunities for targets to shift from their localized position in the image and simplifies 

the workflow of interventions. In addition, performing the intervention within the bore of 

the scanner will allow techniques that employ near-real-time imaging. For example, the 

GE Locus Ultra scanner is capable of acquiring volumetric frame rates as high as 1Hz .9 

 An improved method of needle calibration is presented that better characterizes 

the calibration using the position of the needle tip in photographs rather the needle axis.  

A calibration fixture was also introduced, which significantly reduces the time 

requirements of calibrating the needle depth while maintaining calibration accuracy.  

Two registration modes have been developed to link the robot coordinate system with the 

coordinate system of the micro-CT scanner.  The two registration modes offer a balance 

between the time required to complete a registration and the overall registration accuracy.   

The development of slow high accuracy and fast low accuracy registration modes 

provides the user with a degree of flexibility in selecting a registration mode best suited 

for their application.  

 The targeting accuracy of the robotic system was then characterized using 

targeting experiments in tissue-mimicking gelatin phantoms.  The results of the targeting 

experiments were combined with the known calibration and needle deflection errors to 

provide a more meaningful measure of the needle positioning accuracy of the system.  

Finally, pilot in vivo experiments were completed to demonstrate the performance of the 

system in a biomedical application. 

6.2 Future Work 

Innovations relevant to Chapter 2 of this thesis resulted in the filing of two patents 

included in Appendices A, and B and the licensing of the system to Eigen (Grass Valley, 
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CA) where the clinical prototype system presented here has been developed into a 

commercial product (see Figure 6.1).10 In addition, the series of phantom experiments 

provided sufficient validation of the system to begin clinical trials in collaboration with 

University Hospital, London, ON; Dr. Cesare Romagnoli. The device has been approved 

by Health Canada for use on human subjects and a number of clinical studies have been 

approved by The University of Western Ontario Ethics Board for Health Sciences 

Research Involving Human Subjects (HSREB) (see Appendix D). The purpose of this 

trial was to: 

1. Validate a novel adaptation of a 2D TRUS probe for producing 3D images of 
biopsy data, 

2. Determine the ability of the system to record the 3D location of biopsy cores 
removed from the prostate during the procedure. 

 

Figure 6.1: Photograph of the Atremis prostate biopsy tracking system by Eigen (Grass Valley, CA). 

 With the help from Dr. Romagnoli, the system has undergone a number of 

improvements to help to translate the initial prototype into a potentially useful clinical 

tool. Improvements to the mechanical design allowed us to substantially reduce the mass 

and associated inertia of the linkage, thus making it easier for the physician to maneuver 
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the TRUS probe. The new system illustrated in Figure 6.2 uses a single spring-loaded 

counterbalance assembly in place of the original spring-counterweight combination 

presented in Chapter 2. The new spring counterbalance provides two degrees of 

adjustment to account for both the magnitude and orientation of the payload, which 

consists of the TRUS probe and connecting arm. Once set, the spring-loaded 

counterbalance will completely support the payload without further adjustment and with 

minimal loss of manipulative transparency regardless of the linkage pose or presence of 

the TRUS probe and/or attached biopsy gun. 

 

Figure 6.2: Photograph of the clinical prototype mechanical tracking system for prostate biopsy. A single 
spring-loaded counterbalance assembly is used in place of the original spring-counterweight combination 
presented in Chapter 2. 

 

 Additional research questions related to this project that have been undertaken 

include Determining a) the intra- 11 and b) inter-session registration accuracy of patient 

3D ultrasound scans,12 and c) the study of prostate motion due to the firing of the biopsy 

gun during the procedure.13 In addition, a clinical study is currently being undertaken to 

Spring Balance 
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determine the feasibility of using the mechanical system to guide the biopsy needle using 

preoperative MRI images. 

 Innovations relevant to Chapter 3 of this thesis resulted in the filing of a patent 

included in Appendix C and the licensing of the technology to Eigen (Grass Valley, CA) 

where the clinical prototype system presented here is currently being developed into a 

commercial product.  With the help from Dr. David D'Souza and Dr. Nikhilesh Patil, the 

system has undergone some improvements to prepare the device for an upcoming clinical 

evaluation. The new device, as shown in Figure 6.3, consists of a right-and left-hand 

needle guide to increase its flexibility and eliminate the counterweights used in the 

prototype presented in Chapter 3. In addition, the motorized 3D US mover was also 

redesigned to reduce both the size and weight of the mechatronic system, allowing it to 

be adapted to any clinical stabilizer used for prostate brachytherapy. 

 The clinical investigation will be in collaboration with the London Regional 

Cancer Center, London, ON. The system has been approved by Health Canada for use on 

human subjects and a clinical study has been approved by The University of Western 

Ontario Ethics Board: HSREB (see Appendix E). The purpose of this trial is to: 

1. Determine the improvement to treatment delivery using 3D imaging, 

2. Determine the effectiveness of the intra-operative delivery compensation for 
prostate movement using the system, 

3. Determine if 3D US imaging can be used in place of a combination of 2D US and 
CT imaging, and 

4. Determine whether delivery can be improved using the flexibility of the 
mechatronic device. 
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Figure 6.3: Photograph of the clinical prototype system for ultrasound guided prostate therapy. The new 
device consists of a right-and left-hand needle guide to increase its flexibility and eliminate the 
counterweights used in the prototype presented in Chapter 3. 

 With respect to the small animal system introduced in Chapters 4 and 5, the series 

of phantom experiments and pilot animal studies provided sufficient validation to use the 

system for a number of preclinical research projects ranging from needle-guided 

interventions to image reconstruction. An initial preclinical investigation using the 

system will be in collaboration with the STTARR Pre-clinical Core at Princess Margaret 

Hospital, Toronto, ON. In addition, this system, including the device, phantom and 

validation method developed for this project, can also be adapted to any small imaging 

CT scanner with fields of view ranging from 1 to 20 cm. Since there is no method in the 

literature to calibrate a micro-CT scanner to a traceable standard, the phantom design can 

be potentially useful for any research project that uses the CT as a means of quantitative 

measurement.8 
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6.3 Conclusion 

In addressing each objective of this thesis, a number of novel mechanical designs 

incorporating an RCM design with varying degrees of freedom have been presented. 

Each of these designs can be deployed in a variety of imaging modalities and clinical 

applications, ranging from preclinical to human interventions, with an accuracy of control 

in the millimeter to sub-millimeter range.  In addition, a low inertia spring balance was 

designed to carry larger payloads, and can be adapted to any robot architecture as a 

means to improve safety. In addition, the spring-loaded counterbalance can also be 

modified to provide tremor reduction or inertia negation by adding a simple 

electromechanical feedback circuit or velocity control by combining the springs with 

hydraulic dampers to form a hydro-mechanical feedback loop. 
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Appendix A (Patent application): Apparatus for guiding a medical tool 
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Appendix B (Patent application): Counterbalance Assembly 
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Appendix C (Patent application):Apparatus and Method for guiding Insertion of a 

Medical Tool 
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Appendix D: Health Canada, Ethics Approval Notices and Letters of Information for the 

clinical prostate biopsy studies. 
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Appendix E: Health Canada and Ethics Approval Notice for the clinical prostate therapy 

study. 
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